Whakaoti mō x
x=2\sqrt{3}+3\approx 6.464101615
x=3-2\sqrt{3}\approx -0.464101615
Graph
Tohaina
Kua tāruatia ki te papatopenga
0=x^{2}-6x+9-12
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
0=x^{2}-6x-3
Tangohia te 12 i te 9, ka -3.
x^{2}-6x-3=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+12}}{2}
Whakareatia -4 ki te -3.
x=\frac{-\left(-6\right)±\sqrt{48}}{2}
Tāpiri 36 ki te 12.
x=\frac{-\left(-6\right)±4\sqrt{3}}{2}
Tuhia te pūtakerua o te 48.
x=\frac{6±4\sqrt{3}}{2}
Ko te tauaro o -6 ko 6.
x=\frac{4\sqrt{3}+6}{2}
Nā, me whakaoti te whārite x=\frac{6±4\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 6 ki te 4\sqrt{3}.
x=2\sqrt{3}+3
Whakawehe 6+4\sqrt{3} ki te 2.
x=\frac{6-4\sqrt{3}}{2}
Nā, me whakaoti te whārite x=\frac{6±4\sqrt{3}}{2} ina he tango te ±. Tango 4\sqrt{3} mai i 6.
x=3-2\sqrt{3}
Whakawehe 6-4\sqrt{3} ki te 2.
x=2\sqrt{3}+3 x=3-2\sqrt{3}
Kua oti te whārite te whakatau.
0=x^{2}-6x+9-12
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
0=x^{2}-6x-3
Tangohia te 12 i te 9, ka -3.
x^{2}-6x-3=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-6x=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-6x+\left(-3\right)^{2}=3+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=3+9
Pūrua -3.
x^{2}-6x+9=12
Tāpiri 3 ki te 9.
\left(x-3\right)^{2}=12
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{12}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=2\sqrt{3} x-3=-2\sqrt{3}
Whakarūnātia.
x=2\sqrt{3}+3 x=3-2\sqrt{3}
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}