Whakaoti mō H
H=-\frac{H_{125}}{1250}-\frac{251041}{125}
Whakaoti mō H_125
H_{125}=-1250H-2510410
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
0 = \frac { 2 } { 2 } H 125 + 10 ( 125 H - 9375 + 260416 )
Tohaina
Kua tāruatia ki te papatopenga
0=1H_{125}+10\left(125H-9375+260416\right)
Whakawehea te 2 ki te 2, kia riro ko 1.
0=1H_{125}+10\left(125H+251041\right)
Tāpirihia te -9375 ki te 260416, ka 251041.
0=1H_{125}+1250H+2510410
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te 125H+251041.
1H_{125}+1250H+2510410=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1250H+2510410=-H_{125}
Tangohia te 1H_{125} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
1250H=-H_{125}-2510410
Tangohia te 2510410 mai i ngā taha e rua.
\frac{1250H}{1250}=\frac{-H_{125}-2510410}{1250}
Whakawehea ngā taha e rua ki te 1250.
H=\frac{-H_{125}-2510410}{1250}
Mā te whakawehe ki te 1250 ka wetekia te whakareanga ki te 1250.
H=-\frac{H_{125}}{1250}-\frac{251041}{125}
Whakawehe -H_{125}-2510410 ki te 1250.
0=1H_{125}+10\left(125H-9375+260416\right)
Whakawehea te 2 ki te 2, kia riro ko 1.
0=1H_{125}+10\left(125H+251041\right)
Tāpirihia te -9375 ki te 260416, ka 251041.
0=1H_{125}+1250H+2510410
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te 125H+251041.
1H_{125}+1250H+2510410=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1H_{125}+2510410=-1250H
Tangohia te 1250H mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
1H_{125}=-1250H-2510410
Tangohia te 2510410 mai i ngā taha e rua.
H_{125}=-1250H-2510410
Whakaraupapatia anō ngā kīanga tau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}