Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}x^{2}-x-2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, -1 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-2\left(-2\right)}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2\times \frac{1}{2}}
Whakareatia -2 ki te -2.
x=\frac{-\left(-1\right)±\sqrt{5}}{2\times \frac{1}{2}}
Tāpiri 1 ki te 4.
x=\frac{1±\sqrt{5}}{2\times \frac{1}{2}}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{5}}{1}
Whakareatia 2 ki te \frac{1}{2}.
x=\frac{\sqrt{5}+1}{1}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{5}}{1} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{5}.
x=\sqrt{5}+1
Whakawehe 1+\sqrt{5} ki te 1.
x=\frac{1-\sqrt{5}}{1}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{5}}{1} ina he tango te ±. Tango \sqrt{5} mai i 1.
x=1-\sqrt{5}
Whakawehe 1-\sqrt{5} ki te 1.
x=\sqrt{5}+1 x=1-\sqrt{5}
Kua oti te whārite te whakatau.
\frac{1}{2}x^{2}-x-2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{2}x^{2}-x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=\frac{2}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}-2x=\frac{2}{\frac{1}{2}}
Whakawehe -1 ki te \frac{1}{2} mā te whakarea -1 ki te tau huripoki o \frac{1}{2}.
x^{2}-2x=4
Whakawehe 2 ki te \frac{1}{2} mā te whakarea 2 ki te tau huripoki o \frac{1}{2}.
x^{2}-2x+1=4+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=5
Tāpiri 4 ki te 1.
\left(x-1\right)^{2}=5
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\sqrt{5} x-1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}+1 x=1-\sqrt{5}
Me tāpiri 1 ki ngā taha e rua o te whārite.