Whakaoti mō x
x=\sqrt{5}+1\approx 3.236067977
x=1-\sqrt{5}\approx -1.236067977
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x^{2}-x-2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, -1 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-2\left(-2\right)}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2\times \frac{1}{2}}
Whakareatia -2 ki te -2.
x=\frac{-\left(-1\right)±\sqrt{5}}{2\times \frac{1}{2}}
Tāpiri 1 ki te 4.
x=\frac{1±\sqrt{5}}{2\times \frac{1}{2}}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{5}}{1}
Whakareatia 2 ki te \frac{1}{2}.
x=\frac{\sqrt{5}+1}{1}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{5}}{1} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{5}.
x=\sqrt{5}+1
Whakawehe 1+\sqrt{5} ki te 1.
x=\frac{1-\sqrt{5}}{1}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{5}}{1} ina he tango te ±. Tango \sqrt{5} mai i 1.
x=1-\sqrt{5}
Whakawehe 1-\sqrt{5} ki te 1.
x=\sqrt{5}+1 x=1-\sqrt{5}
Kua oti te whārite te whakatau.
\frac{1}{2}x^{2}-x-2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{2}x^{2}-x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=\frac{2}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}-2x=\frac{2}{\frac{1}{2}}
Whakawehe -1 ki te \frac{1}{2} mā te whakarea -1 ki te tau huripoki o \frac{1}{2}.
x^{2}-2x=4
Whakawehe 2 ki te \frac{1}{2} mā te whakarea 2 ki te tau huripoki o \frac{1}{2}.
x^{2}-2x+1=4+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=5
Tāpiri 4 ki te 1.
\left(x-1\right)^{2}=5
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\sqrt{5} x-1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}+1 x=1-\sqrt{5}
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}