Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-8x-2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-2\right)}}{2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64+8}}{2}
Whakareatia -4 ki te -2.
x=\frac{-\left(-8\right)±\sqrt{72}}{2}
Tāpiri 64 ki te 8.
x=\frac{-\left(-8\right)±6\sqrt{2}}{2}
Tuhia te pūtakerua o te 72.
x=\frac{8±6\sqrt{2}}{2}
Ko te tauaro o -8 ko 8.
x=\frac{6\sqrt{2}+8}{2}
Nā, me whakaoti te whārite x=\frac{8±6\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri 8 ki te 6\sqrt{2}.
x=3\sqrt{2}+4
Whakawehe 8+6\sqrt{2} ki te 2.
x=\frac{8-6\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{8±6\sqrt{2}}{2} ina he tango te ±. Tango 6\sqrt{2} mai i 8.
x=4-3\sqrt{2}
Whakawehe 8-6\sqrt{2} ki te 2.
x=3\sqrt{2}+4 x=4-3\sqrt{2}
Kua oti te whārite te whakatau.
x^{2}-8x-2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-8x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-8x+\left(-4\right)^{2}=2+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=2+16
Pūrua -4.
x^{2}-8x+16=18
Tāpiri 2 ki te 16.
\left(x-4\right)^{2}=18
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{18}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=3\sqrt{2} x-4=-3\sqrt{2}
Whakarūnātia.
x=3\sqrt{2}+4 x=4-3\sqrt{2}
Me tāpiri 4 ki ngā taha e rua o te whārite.