Whakaoti mō t
t=52
t = -\frac{56}{3} = -18\frac{2}{3} \approx -18.666666667
Tohaina
Kua tāruatia ki te papatopenga
0=\left(\frac{3}{4}t+14\right)\left(-t+52\right)
Tangohia te 20 i te 34, ka 14.
0=\frac{3}{4}t\left(-t\right)+\frac{3}{4}t\times 52+14\left(-t\right)+728
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \frac{3}{4}t+14 ki ia tau o -t+52.
0=\frac{3}{4}t\left(-t\right)+\frac{3\times 52}{4}t+14\left(-t\right)+728
Tuhia te \frac{3}{4}\times 52 hei hautanga kotahi.
0=\frac{3}{4}t\left(-t\right)+\frac{156}{4}t+14\left(-t\right)+728
Whakareatia te 3 ki te 52, ka 156.
0=\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728
Whakawehea te 156 ki te 4, kia riro ko 39.
\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{3}{4}tt+39t+14\left(-1\right)t+728=0
Whakareatia te \frac{3}{4} ki te -1, ka -\frac{3}{4}.
-\frac{3}{4}t^{2}+39t+14\left(-1\right)t+728=0
Whakareatia te t ki te t, ka t^{2}.
-\frac{3}{4}t^{2}+39t-14t+728=0
Whakareatia te 14 ki te -1, ka -14.
-\frac{3}{4}t^{2}+25t+728=0
Pahekotia te 39t me -14t, ka 25t.
t=\frac{-25±\sqrt{25^{2}-4\left(-\frac{3}{4}\right)\times 728}}{2\left(-\frac{3}{4}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{3}{4} mō a, 25 mō b, me 728 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-25±\sqrt{625-4\left(-\frac{3}{4}\right)\times 728}}{2\left(-\frac{3}{4}\right)}
Pūrua 25.
t=\frac{-25±\sqrt{625+3\times 728}}{2\left(-\frac{3}{4}\right)}
Whakareatia -4 ki te -\frac{3}{4}.
t=\frac{-25±\sqrt{625+2184}}{2\left(-\frac{3}{4}\right)}
Whakareatia 3 ki te 728.
t=\frac{-25±\sqrt{2809}}{2\left(-\frac{3}{4}\right)}
Tāpiri 625 ki te 2184.
t=\frac{-25±53}{2\left(-\frac{3}{4}\right)}
Tuhia te pūtakerua o te 2809.
t=\frac{-25±53}{-\frac{3}{2}}
Whakareatia 2 ki te -\frac{3}{4}.
t=\frac{28}{-\frac{3}{2}}
Nā, me whakaoti te whārite t=\frac{-25±53}{-\frac{3}{2}} ina he tāpiri te ±. Tāpiri -25 ki te 53.
t=-\frac{56}{3}
Whakawehe 28 ki te -\frac{3}{2} mā te whakarea 28 ki te tau huripoki o -\frac{3}{2}.
t=-\frac{78}{-\frac{3}{2}}
Nā, me whakaoti te whārite t=\frac{-25±53}{-\frac{3}{2}} ina he tango te ±. Tango 53 mai i -25.
t=52
Whakawehe -78 ki te -\frac{3}{2} mā te whakarea -78 ki te tau huripoki o -\frac{3}{2}.
t=-\frac{56}{3} t=52
Kua oti te whārite te whakatau.
0=\left(\frac{3}{4}t+14\right)\left(-t+52\right)
Tangohia te 20 i te 34, ka 14.
0=\frac{3}{4}t\left(-t\right)+\frac{3}{4}t\times 52+14\left(-t\right)+728
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \frac{3}{4}t+14 ki ia tau o -t+52.
0=\frac{3}{4}t\left(-t\right)+\frac{3\times 52}{4}t+14\left(-t\right)+728
Tuhia te \frac{3}{4}\times 52 hei hautanga kotahi.
0=\frac{3}{4}t\left(-t\right)+\frac{156}{4}t+14\left(-t\right)+728
Whakareatia te 3 ki te 52, ka 156.
0=\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728
Whakawehea te 156 ki te 4, kia riro ko 39.
\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)+728=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{3}{4}t\left(-t\right)+39t+14\left(-t\right)=-728
Tangohia te 728 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-\frac{3}{4}tt+39t+14\left(-1\right)t=-728
Whakareatia te \frac{3}{4} ki te -1, ka -\frac{3}{4}.
-\frac{3}{4}t^{2}+39t+14\left(-1\right)t=-728
Whakareatia te t ki te t, ka t^{2}.
-\frac{3}{4}t^{2}+39t-14t=-728
Whakareatia te 14 ki te -1, ka -14.
-\frac{3}{4}t^{2}+25t=-728
Pahekotia te 39t me -14t, ka 25t.
\frac{-\frac{3}{4}t^{2}+25t}{-\frac{3}{4}}=-\frac{728}{-\frac{3}{4}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
t^{2}+\frac{25}{-\frac{3}{4}}t=-\frac{728}{-\frac{3}{4}}
Mā te whakawehe ki te -\frac{3}{4} ka wetekia te whakareanga ki te -\frac{3}{4}.
t^{2}-\frac{100}{3}t=-\frac{728}{-\frac{3}{4}}
Whakawehe 25 ki te -\frac{3}{4} mā te whakarea 25 ki te tau huripoki o -\frac{3}{4}.
t^{2}-\frac{100}{3}t=\frac{2912}{3}
Whakawehe -728 ki te -\frac{3}{4} mā te whakarea -728 ki te tau huripoki o -\frac{3}{4}.
t^{2}-\frac{100}{3}t+\left(-\frac{50}{3}\right)^{2}=\frac{2912}{3}+\left(-\frac{50}{3}\right)^{2}
Whakawehea te -\frac{100}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{50}{3}. Nā, tāpiria te pūrua o te -\frac{50}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{100}{3}t+\frac{2500}{9}=\frac{2912}{3}+\frac{2500}{9}
Pūruatia -\frac{50}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{100}{3}t+\frac{2500}{9}=\frac{11236}{9}
Tāpiri \frac{2912}{3} ki te \frac{2500}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{50}{3}\right)^{2}=\frac{11236}{9}
Tauwehea t^{2}-\frac{100}{3}t+\frac{2500}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{50}{3}\right)^{2}}=\sqrt{\frac{11236}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{50}{3}=\frac{106}{3} t-\frac{50}{3}=-\frac{106}{3}
Whakarūnātia.
t=52 t=-\frac{56}{3}
Me tāpiri \frac{50}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}