Whakaoti mō x
x=15
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.36\left(x+60\right)=12+x
Tē taea kia ōrite te tāupe x ki -60 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+60.
0.36x+21.6=12+x
Whakamahia te āhuatanga tohatoha hei whakarea te 0.36 ki te x+60.
0.36x+21.6-x=12
Tangohia te x mai i ngā taha e rua.
-0.64x+21.6=12
Pahekotia te 0.36x me -x, ka -0.64x.
-0.64x=12-21.6
Tangohia te 21.6 mai i ngā taha e rua.
-0.64x=-9.6
Tangohia te 21.6 i te 12, ka -9.6.
x=\frac{-9.6}{-0.64}
Whakawehea ngā taha e rua ki te -0.64.
x=\frac{-960}{-64}
Whakarohaina te \frac{-9.6}{-0.64} mā te whakarea i te taurunga me te tauraro ki te 100.
x=15
Whakawehea te -960 ki te -64, kia riro ko 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}