Whakaoti mō x
x=-\frac{3x_{7}}{40}+3.125
Whakaoti mō x_7
x_{7}=\frac{125-40x}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x=12.5-0.3x_{7}
Tangohia te 0.3x_{7} mai i ngā taha e rua.
4x=-\frac{3x_{7}}{10}+12.5
He hanga arowhānui tō te whārite.
\frac{4x}{4}=\frac{-\frac{3x_{7}}{10}+12.5}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{-\frac{3x_{7}}{10}+12.5}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x=-\frac{3x_{7}}{40}+\frac{25}{8}
Whakawehe 12.5-\frac{3x_{7}}{10} ki te 4.
0.3x_{7}=12.5-4x
Tangohia te 4x mai i ngā taha e rua.
\frac{0.3x_{7}}{0.3}=\frac{12.5-4x}{0.3}
Whakawehea ngā taha e rua o te whārite ki te 0.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x_{7}=\frac{12.5-4x}{0.3}
Mā te whakawehe ki te 0.3 ka wetekia te whakareanga ki te 0.3.
x_{7}=\frac{125-40x}{3}
Whakawehe 12.5-4x ki te 0.3 mā te whakarea 12.5-4x ki te tau huripoki o 0.3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}