Whakaoti mō x
x=0.799375
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
.1(.94)+.25(18.5 \div 25+.01)+.25(6 \div 16+.02)+.4x=.7
Tohaina
Kua tāruatia ki te papatopenga
0.094+0.25\left(\frac{18.5}{25}+0.01\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Whakareatia te 0.1 ki te 0.94, ka 0.094.
0.094+0.25\left(\frac{185}{250}+0.01\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Whakarohaina te \frac{18.5}{25} mā te whakarea i te taurunga me te tauraro ki te 10.
0.094+0.25\left(\frac{37}{50}+0.01\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Whakahekea te hautanga \frac{185}{250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
0.094+0.25\left(\frac{37}{50}+\frac{1}{100}\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Me tahuri ki tau ā-ira 0.01 ki te hautau \frac{1}{100}.
0.094+0.25\left(\frac{74}{100}+\frac{1}{100}\right)+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Ko te maha noa iti rawa atu o 50 me 100 ko 100. Me tahuri \frac{37}{50} me \frac{1}{100} ki te hautau me te tautūnga 100.
0.094+0.25\times \frac{74+1}{100}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Tā te mea he rite te tauraro o \frac{74}{100} me \frac{1}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
0.094+0.25\times \frac{75}{100}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Tāpirihia te 74 ki te 1, ka 75.
0.094+0.25\times \frac{3}{4}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
0.094+\frac{1}{4}\times \frac{3}{4}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Me tahuri ki tau ā-ira 0.25 ki te hautau \frac{25}{100}. Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
0.094+\frac{1\times 3}{4\times 4}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Me whakarea te \frac{1}{4} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0.094+\frac{3}{16}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{4\times 4}.
\frac{47}{500}+\frac{3}{16}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Me tahuri ki tau ā-ira 0.094 ki te hautau \frac{94}{1000}. Whakahekea te hautanga \frac{94}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{188}{2000}+\frac{375}{2000}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Ko te maha noa iti rawa atu o 500 me 16 ko 2000. Me tahuri \frac{47}{500} me \frac{3}{16} ki te hautau me te tautūnga 2000.
\frac{188+375}{2000}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Tā te mea he rite te tauraro o \frac{188}{2000} me \frac{375}{2000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{563}{2000}+0.25\left(\frac{6}{16}+0.02\right)+0.4x=0.7
Tāpirihia te 188 ki te 375, ka 563.
\frac{563}{2000}+0.25\left(\frac{3}{8}+0.02\right)+0.4x=0.7
Whakahekea te hautanga \frac{6}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{563}{2000}+0.25\left(\frac{3}{8}+\frac{1}{50}\right)+0.4x=0.7
Me tahuri ki tau ā-ira 0.02 ki te hautau \frac{2}{100}. Whakahekea te hautanga \frac{2}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{563}{2000}+0.25\left(\frac{75}{200}+\frac{4}{200}\right)+0.4x=0.7
Ko te maha noa iti rawa atu o 8 me 50 ko 200. Me tahuri \frac{3}{8} me \frac{1}{50} ki te hautau me te tautūnga 200.
\frac{563}{2000}+0.25\times \frac{75+4}{200}+0.4x=0.7
Tā te mea he rite te tauraro o \frac{75}{200} me \frac{4}{200}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{563}{2000}+0.25\times \frac{79}{200}+0.4x=0.7
Tāpirihia te 75 ki te 4, ka 79.
\frac{563}{2000}+\frac{1}{4}\times \frac{79}{200}+0.4x=0.7
Me tahuri ki tau ā-ira 0.25 ki te hautau \frac{25}{100}. Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{563}{2000}+\frac{1\times 79}{4\times 200}+0.4x=0.7
Me whakarea te \frac{1}{4} ki te \frac{79}{200} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{563}{2000}+\frac{79}{800}+0.4x=0.7
Mahia ngā whakarea i roto i te hautanga \frac{1\times 79}{4\times 200}.
\frac{1126}{4000}+\frac{395}{4000}+0.4x=0.7
Ko te maha noa iti rawa atu o 2000 me 800 ko 4000. Me tahuri \frac{563}{2000} me \frac{79}{800} ki te hautau me te tautūnga 4000.
\frac{1126+395}{4000}+0.4x=0.7
Tā te mea he rite te tauraro o \frac{1126}{4000} me \frac{395}{4000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1521}{4000}+0.4x=0.7
Tāpirihia te 1126 ki te 395, ka 1521.
0.4x=0.7-\frac{1521}{4000}
Tangohia te \frac{1521}{4000} mai i ngā taha e rua.
0.4x=\frac{7}{10}-\frac{1521}{4000}
Me tahuri ki tau ā-ira 0.7 ki te hautau \frac{7}{10}.
0.4x=\frac{2800}{4000}-\frac{1521}{4000}
Ko te maha noa iti rawa atu o 10 me 4000 ko 4000. Me tahuri \frac{7}{10} me \frac{1521}{4000} ki te hautau me te tautūnga 4000.
0.4x=\frac{2800-1521}{4000}
Tā te mea he rite te tauraro o \frac{2800}{4000} me \frac{1521}{4000}, me tango rāua mā te tango i ō raua taurunga.
0.4x=\frac{1279}{4000}
Tangohia te 1521 i te 2800, ka 1279.
x=\frac{\frac{1279}{4000}}{0.4}
Whakawehea ngā taha e rua ki te 0.4.
x=\frac{1279}{4000\times 0.4}
Tuhia te \frac{\frac{1279}{4000}}{0.4} hei hautanga kotahi.
x=\frac{1279}{1600}
Whakareatia te 4000 ki te 0.4, ka 1600.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}