Whakaoti mō x
x=13-2y
Whakaoti mō y
y=\frac{13-x}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.05x=0.65-0.1y
Tangohia te 0.1y mai i ngā taha e rua.
0.05x=-\frac{y}{10}+0.65
He hanga arowhānui tō te whārite.
\frac{0.05x}{0.05}=\frac{-\frac{y}{10}+0.65}{0.05}
Me whakarea ngā taha e rua ki te 20.
x=\frac{-\frac{y}{10}+0.65}{0.05}
Mā te whakawehe ki te 0.05 ka wetekia te whakareanga ki te 0.05.
x=13-2y
Whakawehe 0.65-\frac{y}{10} ki te 0.05 mā te whakarea 0.65-\frac{y}{10} ki te tau huripoki o 0.05.
0.1y=0.65-0.05x
Tangohia te 0.05x mai i ngā taha e rua.
0.1y=\frac{13-x}{20}
He hanga arowhānui tō te whārite.
\frac{0.1y}{0.1}=\frac{13-x}{0.1\times 20}
Me whakarea ngā taha e rua ki te 10.
y=\frac{13-x}{0.1\times 20}
Mā te whakawehe ki te 0.1 ka wetekia te whakareanga ki te 0.1.
y=\frac{13-x}{2}
Whakawehe \frac{13-x}{20} ki te 0.1 mā te whakarea \frac{13-x}{20} ki te tau huripoki o 0.1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}