Whakaoti mō x
x=\frac{\sqrt{42}}{3}+4\approx 6.160246899
x=-\frac{\sqrt{42}}{3}+4\approx 1.839753101
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9x^{2}+72x-102=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-72±\sqrt{72^{2}-4\left(-9\right)\left(-102\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 72 mō b, me -102 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\left(-9\right)\left(-102\right)}}{2\left(-9\right)}
Pūrua 72.
x=\frac{-72±\sqrt{5184+36\left(-102\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-72±\sqrt{5184-3672}}{2\left(-9\right)}
Whakareatia 36 ki te -102.
x=\frac{-72±\sqrt{1512}}{2\left(-9\right)}
Tāpiri 5184 ki te -3672.
x=\frac{-72±6\sqrt{42}}{2\left(-9\right)}
Tuhia te pūtakerua o te 1512.
x=\frac{-72±6\sqrt{42}}{-18}
Whakareatia 2 ki te -9.
x=\frac{6\sqrt{42}-72}{-18}
Nā, me whakaoti te whārite x=\frac{-72±6\sqrt{42}}{-18} ina he tāpiri te ±. Tāpiri -72 ki te 6\sqrt{42}.
x=-\frac{\sqrt{42}}{3}+4
Whakawehe -72+6\sqrt{42} ki te -18.
x=\frac{-6\sqrt{42}-72}{-18}
Nā, me whakaoti te whārite x=\frac{-72±6\sqrt{42}}{-18} ina he tango te ±. Tango 6\sqrt{42} mai i -72.
x=\frac{\sqrt{42}}{3}+4
Whakawehe -72-6\sqrt{42} ki te -18.
x=-\frac{\sqrt{42}}{3}+4 x=\frac{\sqrt{42}}{3}+4
Kua oti te whārite te whakatau.
-9x^{2}+72x-102=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-9x^{2}+72x-102-\left(-102\right)=-\left(-102\right)
Me tāpiri 102 ki ngā taha e rua o te whārite.
-9x^{2}+72x=-\left(-102\right)
Mā te tango i te -102 i a ia ake anō ka toe ko te 0.
-9x^{2}+72x=102
Tango -102 mai i 0.
\frac{-9x^{2}+72x}{-9}=\frac{102}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\frac{72}{-9}x=\frac{102}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}-8x=\frac{102}{-9}
Whakawehe 72 ki te -9.
x^{2}-8x=-\frac{34}{3}
Whakahekea te hautanga \frac{102}{-9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-8x+\left(-4\right)^{2}=-\frac{34}{3}+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-\frac{34}{3}+16
Pūrua -4.
x^{2}-8x+16=\frac{14}{3}
Tāpiri -\frac{34}{3} ki te 16.
\left(x-4\right)^{2}=\frac{14}{3}
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{14}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=\frac{\sqrt{42}}{3} x-4=-\frac{\sqrt{42}}{3}
Whakarūnātia.
x=\frac{\sqrt{42}}{3}+4 x=-\frac{\sqrt{42}}{3}+4
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}