Whakaoti mō x
x=\frac{1}{8}=0.125
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-16x^{2}+10x-1=0
Whakawehea ngā taha e rua ki te 5.
a+b=10 ab=-16\left(-1\right)=16
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -16x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,16 2,8 4,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 16.
1+16=17 2+8=10 4+4=8
Tātaihia te tapeke mō ia takirua.
a=8 b=2
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(-16x^{2}+8x\right)+\left(2x-1\right)
Tuhia anō te -16x^{2}+10x-1 hei \left(-16x^{2}+8x\right)+\left(2x-1\right).
-8x\left(2x-1\right)+2x-1
Whakatauwehea atu -8x i te -16x^{2}+8x.
\left(2x-1\right)\left(-8x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=\frac{1}{8}
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te -8x+1=0.
-80x^{2}+50x-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-50±\sqrt{50^{2}-4\left(-80\right)\left(-5\right)}}{2\left(-80\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -80 mō a, 50 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\left(-80\right)\left(-5\right)}}{2\left(-80\right)}
Pūrua 50.
x=\frac{-50±\sqrt{2500+320\left(-5\right)}}{2\left(-80\right)}
Whakareatia -4 ki te -80.
x=\frac{-50±\sqrt{2500-1600}}{2\left(-80\right)}
Whakareatia 320 ki te -5.
x=\frac{-50±\sqrt{900}}{2\left(-80\right)}
Tāpiri 2500 ki te -1600.
x=\frac{-50±30}{2\left(-80\right)}
Tuhia te pūtakerua o te 900.
x=\frac{-50±30}{-160}
Whakareatia 2 ki te -80.
x=-\frac{20}{-160}
Nā, me whakaoti te whārite x=\frac{-50±30}{-160} ina he tāpiri te ±. Tāpiri -50 ki te 30.
x=\frac{1}{8}
Whakahekea te hautanga \frac{-20}{-160} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
x=-\frac{80}{-160}
Nā, me whakaoti te whārite x=\frac{-50±30}{-160} ina he tango te ±. Tango 30 mai i -50.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-80}{-160} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 80.
x=\frac{1}{8} x=\frac{1}{2}
Kua oti te whārite te whakatau.
-80x^{2}+50x-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-80x^{2}+50x-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
-80x^{2}+50x=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
-80x^{2}+50x=5
Tango -5 mai i 0.
\frac{-80x^{2}+50x}{-80}=\frac{5}{-80}
Whakawehea ngā taha e rua ki te -80.
x^{2}+\frac{50}{-80}x=\frac{5}{-80}
Mā te whakawehe ki te -80 ka wetekia te whakareanga ki te -80.
x^{2}-\frac{5}{8}x=\frac{5}{-80}
Whakahekea te hautanga \frac{50}{-80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x^{2}-\frac{5}{8}x=-\frac{1}{16}
Whakahekea te hautanga \frac{5}{-80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{5}{8}x+\left(-\frac{5}{16}\right)^{2}=-\frac{1}{16}+\left(-\frac{5}{16}\right)^{2}
Whakawehea te -\frac{5}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{16}. Nā, tāpiria te pūrua o te -\frac{5}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{8}x+\frac{25}{256}=-\frac{1}{16}+\frac{25}{256}
Pūruatia -\frac{5}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{8}x+\frac{25}{256}=\frac{9}{256}
Tāpiri -\frac{1}{16} ki te \frac{25}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{16}\right)^{2}=\frac{9}{256}
Tauwehea x^{2}-\frac{5}{8}x+\frac{25}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{16}\right)^{2}}=\sqrt{\frac{9}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{16}=\frac{3}{16} x-\frac{5}{16}=-\frac{3}{16}
Whakarūnātia.
x=\frac{1}{2} x=\frac{1}{8}
Me tāpiri \frac{5}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}