Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-24-8x+3\left(3-x\right)-5=-6x-10\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -8 ki te 3+x.
-24-8x+9-3x-5=-6x-10\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3-x.
-15-8x-3x-5=-6x-10\left(x+2\right)
Tāpirihia te -24 ki te 9, ka -15.
-15-11x-5=-6x-10\left(x+2\right)
Pahekotia te -8x me -3x, ka -11x.
-20-11x=-6x-10\left(x+2\right)
Tangohia te 5 i te -15, ka -20.
-20-11x=-6x-10x-20
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te x+2.
-20-11x=-16x-20
Pahekotia te -6x me -10x, ka -16x.
-20-11x+16x=-20
Me tāpiri te 16x ki ngā taha e rua.
-20+5x=-20
Pahekotia te -11x me 16x, ka 5x.
5x=-20+20
Me tāpiri te 20 ki ngā taha e rua.
5x=0
Tāpirihia te -20 ki te 20, ka 0.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 5 e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}