Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
-51\left(8\times 4+1\right)+68\left(5\times 3+2\right)=-12\left(2\times 17+7\right)
Me whakarea ngā taha e rua o te whārite ki te 204, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3,17.
-51\left(32+1\right)+68\left(5\times 3+2\right)=-12\left(2\times 17+7\right)
Whakareatia te 8 ki te 4, ka 32.
-51\times 33+68\left(5\times 3+2\right)=-12\left(2\times 17+7\right)
Tāpirihia te 32 ki te 1, ka 33.
-1683+68\left(5\times 3+2\right)=-12\left(2\times 17+7\right)
Whakareatia te -51 ki te 33, ka -1683.
-1683+68\left(15+2\right)=-12\left(2\times 17+7\right)
Whakareatia te 5 ki te 3, ka 15.
-1683+68\times 17=-12\left(2\times 17+7\right)
Tāpirihia te 15 ki te 2, ka 17.
-1683+1156=-12\left(2\times 17+7\right)
Whakareatia te 68 ki te 17, ka 1156.
-527=-12\left(2\times 17+7\right)
Tāpirihia te -1683 ki te 1156, ka -527.
-527=-12\left(34+7\right)
Whakareatia te 2 ki te 17, ka 34.
-527=-12\times 41
Tāpirihia te 34 ki te 7, ka 41.
-527=-492
Whakareatia te -12 ki te 41, ka -492.
\text{false}
Whakatauritea te -527 me te -492.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}