Whakaoti mō x
x=1
x=-\frac{1}{8}=-0.125
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7x^{2}+7x=\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -7x ki te x-1.
-7x^{2}+7x=x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
-7x^{2}+7x-x^{2}=-1
Tangohia te x^{2} mai i ngā taha e rua.
-8x^{2}+7x=-1
Pahekotia te -7x^{2} me -x^{2}, ka -8x^{2}.
-8x^{2}+7x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x=\frac{-7±\sqrt{7^{2}-4\left(-8\right)}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 7 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-8\right)}}{2\left(-8\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+32}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-7±\sqrt{81}}{2\left(-8\right)}
Tāpiri 49 ki te 32.
x=\frac{-7±9}{2\left(-8\right)}
Tuhia te pūtakerua o te 81.
x=\frac{-7±9}{-16}
Whakareatia 2 ki te -8.
x=\frac{2}{-16}
Nā, me whakaoti te whārite x=\frac{-7±9}{-16} ina he tāpiri te ±. Tāpiri -7 ki te 9.
x=-\frac{1}{8}
Whakahekea te hautanga \frac{2}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{16}{-16}
Nā, me whakaoti te whārite x=\frac{-7±9}{-16} ina he tango te ±. Tango 9 mai i -7.
x=1
Whakawehe -16 ki te -16.
x=-\frac{1}{8} x=1
Kua oti te whārite te whakatau.
-7x^{2}+7x=\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -7x ki te x-1.
-7x^{2}+7x=x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
-7x^{2}+7x-x^{2}=-1
Tangohia te x^{2} mai i ngā taha e rua.
-8x^{2}+7x=-1
Pahekotia te -7x^{2} me -x^{2}, ka -8x^{2}.
\frac{-8x^{2}+7x}{-8}=-\frac{1}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{7}{-8}x=-\frac{1}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-\frac{7}{8}x=-\frac{1}{-8}
Whakawehe 7 ki te -8.
x^{2}-\frac{7}{8}x=\frac{1}{8}
Whakawehe -1 ki te -8.
x^{2}-\frac{7}{8}x+\left(-\frac{7}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{7}{16}\right)^{2}
Whakawehea te -\frac{7}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{16}. Nā, tāpiria te pūrua o te -\frac{7}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{1}{8}+\frac{49}{256}
Pūruatia -\frac{7}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{81}{256}
Tāpiri \frac{1}{8} ki te \frac{49}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{16}\right)^{2}=\frac{81}{256}
Tauwehea x^{2}-\frac{7}{8}x+\frac{49}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{16}\right)^{2}}=\sqrt{\frac{81}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{16}=\frac{9}{16} x-\frac{7}{16}=-\frac{9}{16}
Whakarūnātia.
x=1 x=-\frac{1}{8}
Me tāpiri \frac{7}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}