Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-793xx+9\left(x-15\right)x+4\left(x-4\right)x=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-793x^{2}+9\left(x-15\right)x+4\left(x-4\right)x=0
Whakareatia te x ki te x, ka x^{2}.
-793x^{2}+\left(9x-135\right)x+4\left(x-4\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x-15.
-793x^{2}+9x^{2}-135x+4\left(x-4\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 9x-135 ki te x.
-784x^{2}-135x+4\left(x-4\right)x=0
Pahekotia te -793x^{2} me 9x^{2}, ka -784x^{2}.
-784x^{2}-135x+\left(4x-16\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-4.
-784x^{2}-135x+4x^{2}-16x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x-16 ki te x.
-780x^{2}-135x-16x=0
Pahekotia te -784x^{2} me 4x^{2}, ka -780x^{2}.
-780x^{2}-151x=0
Pahekotia te -135x me -16x, ka -151x.
x\left(-780x-151\right)=0
Tauwehea te x.
x=0 x=-\frac{151}{780}
Hei kimi otinga whārite, me whakaoti te x=0 me te -780x-151=0.
x=-\frac{151}{780}
Tē taea kia ōrite te tāupe x ki 0.
-793xx+9\left(x-15\right)x+4\left(x-4\right)x=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-793x^{2}+9\left(x-15\right)x+4\left(x-4\right)x=0
Whakareatia te x ki te x, ka x^{2}.
-793x^{2}+\left(9x-135\right)x+4\left(x-4\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x-15.
-793x^{2}+9x^{2}-135x+4\left(x-4\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 9x-135 ki te x.
-784x^{2}-135x+4\left(x-4\right)x=0
Pahekotia te -793x^{2} me 9x^{2}, ka -784x^{2}.
-784x^{2}-135x+\left(4x-16\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-4.
-784x^{2}-135x+4x^{2}-16x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x-16 ki te x.
-780x^{2}-135x-16x=0
Pahekotia te -784x^{2} me 4x^{2}, ka -780x^{2}.
-780x^{2}-151x=0
Pahekotia te -135x me -16x, ka -151x.
x=\frac{-\left(-151\right)±\sqrt{\left(-151\right)^{2}}}{2\left(-780\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -780 mō a, -151 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-151\right)±151}{2\left(-780\right)}
Tuhia te pūtakerua o te \left(-151\right)^{2}.
x=\frac{151±151}{2\left(-780\right)}
Ko te tauaro o -151 ko 151.
x=\frac{151±151}{-1560}
Whakareatia 2 ki te -780.
x=\frac{302}{-1560}
Nā, me whakaoti te whārite x=\frac{151±151}{-1560} ina he tāpiri te ±. Tāpiri 151 ki te 151.
x=-\frac{151}{780}
Whakahekea te hautanga \frac{302}{-1560} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{-1560}
Nā, me whakaoti te whārite x=\frac{151±151}{-1560} ina he tango te ±. Tango 151 mai i 151.
x=0
Whakawehe 0 ki te -1560.
x=-\frac{151}{780} x=0
Kua oti te whārite te whakatau.
x=-\frac{151}{780}
Tē taea kia ōrite te tāupe x ki 0.
-793xx+9\left(x-15\right)x+4\left(x-4\right)x=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-793x^{2}+9\left(x-15\right)x+4\left(x-4\right)x=0
Whakareatia te x ki te x, ka x^{2}.
-793x^{2}+\left(9x-135\right)x+4\left(x-4\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x-15.
-793x^{2}+9x^{2}-135x+4\left(x-4\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 9x-135 ki te x.
-784x^{2}-135x+4\left(x-4\right)x=0
Pahekotia te -793x^{2} me 9x^{2}, ka -784x^{2}.
-784x^{2}-135x+\left(4x-16\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-4.
-784x^{2}-135x+4x^{2}-16x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4x-16 ki te x.
-780x^{2}-135x-16x=0
Pahekotia te -784x^{2} me 4x^{2}, ka -780x^{2}.
-780x^{2}-151x=0
Pahekotia te -135x me -16x, ka -151x.
\frac{-780x^{2}-151x}{-780}=\frac{0}{-780}
Whakawehea ngā taha e rua ki te -780.
x^{2}+\left(-\frac{151}{-780}\right)x=\frac{0}{-780}
Mā te whakawehe ki te -780 ka wetekia te whakareanga ki te -780.
x^{2}+\frac{151}{780}x=\frac{0}{-780}
Whakawehe -151 ki te -780.
x^{2}+\frac{151}{780}x=0
Whakawehe 0 ki te -780.
x^{2}+\frac{151}{780}x+\left(\frac{151}{1560}\right)^{2}=\left(\frac{151}{1560}\right)^{2}
Whakawehea te \frac{151}{780}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{151}{1560}. Nā, tāpiria te pūrua o te \frac{151}{1560} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{151}{780}x+\frac{22801}{2433600}=\frac{22801}{2433600}
Pūruatia \frac{151}{1560} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{151}{1560}\right)^{2}=\frac{22801}{2433600}
Tauwehea x^{2}+\frac{151}{780}x+\frac{22801}{2433600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{151}{1560}\right)^{2}}=\sqrt{\frac{22801}{2433600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{151}{1560}=\frac{151}{1560} x+\frac{151}{1560}=-\frac{151}{1560}
Whakarūnātia.
x=0 x=-\frac{151}{780}
Me tango \frac{151}{1560} mai i ngā taha e rua o te whārite.
x=-\frac{151}{780}
Tē taea kia ōrite te tāupe x ki 0.