Aromātai
-6
Tauwehe
-6
Tohaina
Kua tāruatia ki te papatopenga
-7-\frac{3+1}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Whakareatia te 1 ki te 3, ka 3.
-7-\frac{4}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Tāpirihia te 3 ki te 1, ka 4.
-\frac{21}{3}-\frac{4}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Me tahuri te -7 ki te hautau -\frac{21}{3}.
\frac{-21-4}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Tā te mea he rite te tauraro o -\frac{21}{3} me \frac{4}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{25}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Tangohia te 4 i te -21, ka -25.
-\frac{25}{3}+7-\frac{4\times 3+2}{3}
Ko te tauaro o -7 ko 7.
-\frac{25}{3}+\frac{21}{3}-\frac{4\times 3+2}{3}
Me tahuri te 7 ki te hautau \frac{21}{3}.
\frac{-25+21}{3}-\frac{4\times 3+2}{3}
Tā te mea he rite te tauraro o -\frac{25}{3} me \frac{21}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{4}{3}-\frac{4\times 3+2}{3}
Tāpirihia te -25 ki te 21, ka -4.
-\frac{4}{3}-\frac{12+2}{3}
Whakareatia te 4 ki te 3, ka 12.
-\frac{4}{3}-\frac{14}{3}
Tāpirihia te 12 ki te 2, ka 14.
\frac{-4-14}{3}
Tā te mea he rite te tauraro o -\frac{4}{3} me \frac{14}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{-18}{3}
Tangohia te 14 i te -4, ka -18.
-6
Whakawehea te -18 ki te 3, kia riro ko -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}