Aromātai
-216
Tauwehe
-216
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
-7-1 \frac { 1 } { 3 } (36)-(-7)- 4 \frac { 2 } { 3 } (36)
Tohaina
Kua tāruatia ki te papatopenga
-7-\frac{3+1}{3}\times 36-\left(-7\right)-\frac{4\times 3+2}{3}\times 36
Whakareatia te 1 ki te 3, ka 3.
-7-\frac{4}{3}\times 36-\left(-7\right)-\frac{4\times 3+2}{3}\times 36
Tāpirihia te 3 ki te 1, ka 4.
-7-\frac{4\times 36}{3}-\left(-7\right)-\frac{4\times 3+2}{3}\times 36
Tuhia te \frac{4}{3}\times 36 hei hautanga kotahi.
-7-\frac{144}{3}-\left(-7\right)-\frac{4\times 3+2}{3}\times 36
Whakareatia te 4 ki te 36, ka 144.
-7-48-\left(-7\right)-\frac{4\times 3+2}{3}\times 36
Whakawehea te 144 ki te 3, kia riro ko 48.
-55-\left(-7\right)-\frac{4\times 3+2}{3}\times 36
Tangohia te 48 i te -7, ka -55.
-55+7-\frac{4\times 3+2}{3}\times 36
Ko te tauaro o -7 ko 7.
-48-\frac{4\times 3+2}{3}\times 36
Tāpirihia te -55 ki te 7, ka -48.
-48-\frac{12+2}{3}\times 36
Whakareatia te 4 ki te 3, ka 12.
-48-\frac{14}{3}\times 36
Tāpirihia te 12 ki te 2, ka 14.
-48-\frac{14\times 36}{3}
Tuhia te \frac{14}{3}\times 36 hei hautanga kotahi.
-48-\frac{504}{3}
Whakareatia te 14 ki te 36, ka 504.
-48-168
Whakawehea te 504 ki te 3, kia riro ko 168.
-216
Tangohia te 168 i te -48, ka -216.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}