Aromātai
-21.6
Tauwehe
-21.6
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
-7-1 \frac { 1 } { 3 } (3.6)-(-7)- 4 \frac { 2 } { 3 } (3.6)
Tohaina
Kua tāruatia ki te papatopenga
-7-\frac{3+1}{3}\times 3.6-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Whakareatia te 1 ki te 3, ka 3.
-7-\frac{4}{3}\times 3.6-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Tāpirihia te 3 ki te 1, ka 4.
-7-\frac{4}{3}\times \frac{18}{5}-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Me tahuri ki tau ā-ira 3.6 ki te hautau \frac{36}{10}. Whakahekea te hautanga \frac{36}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-7-\frac{4\times 18}{3\times 5}-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Me whakarea te \frac{4}{3} ki te \frac{18}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-7-\frac{72}{15}-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Mahia ngā whakarea i roto i te hautanga \frac{4\times 18}{3\times 5}.
-7-\frac{24}{5}-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Whakahekea te hautanga \frac{72}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{35}{5}-\frac{24}{5}-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Me tahuri te -7 ki te hautau -\frac{35}{5}.
\frac{-35-24}{5}-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Tā te mea he rite te tauraro o -\frac{35}{5} me \frac{24}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{59}{5}-\left(-7\right)-\frac{4\times 3+2}{3}\times 3.6
Tangohia te 24 i te -35, ka -59.
-\frac{59}{5}+7-\frac{4\times 3+2}{3}\times 3.6
Ko te tauaro o -7 ko 7.
-\frac{59}{5}+\frac{35}{5}-\frac{4\times 3+2}{3}\times 3.6
Me tahuri te 7 ki te hautau \frac{35}{5}.
\frac{-59+35}{5}-\frac{4\times 3+2}{3}\times 3.6
Tā te mea he rite te tauraro o -\frac{59}{5} me \frac{35}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{24}{5}-\frac{4\times 3+2}{3}\times 3.6
Tāpirihia te -59 ki te 35, ka -24.
-\frac{24}{5}-\frac{12+2}{3}\times 3.6
Whakareatia te 4 ki te 3, ka 12.
-\frac{24}{5}-\frac{14}{3}\times 3.6
Tāpirihia te 12 ki te 2, ka 14.
-\frac{24}{5}-\frac{14}{3}\times \frac{18}{5}
Me tahuri ki tau ā-ira 3.6 ki te hautau \frac{36}{10}. Whakahekea te hautanga \frac{36}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{24}{5}-\frac{14\times 18}{3\times 5}
Me whakarea te \frac{14}{3} ki te \frac{18}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{24}{5}-\frac{252}{15}
Mahia ngā whakarea i roto i te hautanga \frac{14\times 18}{3\times 5}.
-\frac{24}{5}-\frac{84}{5}
Whakahekea te hautanga \frac{252}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{-24-84}{5}
Tā te mea he rite te tauraro o -\frac{24}{5} me \frac{84}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{108}{5}
Tangohia te 84 i te -24, ka -108.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}