Whakaoti mō x
x=\left(\frac{1}{3}-\frac{5}{3}i\right)y-\frac{4}{3}i
Whakaoti mō y
y=\left(\frac{3}{26}+\frac{15}{26}i\right)x+\left(-\frac{10}{13}+\frac{2}{13}i\right)
Tohaina
Kua tāruatia ki te papatopenga
-7x-4i+y=-5i^{19}y-4x
Tātaihia te i mā te pū o 8, kia riro ko 1.
-7x-4i+y=-5\left(-i\right)y-4x
Tātaihia te i mā te pū o 19, kia riro ko -i.
-7x-4i+y=5iy-4x
Whakareatia te -5 ki te -i, ka 5i.
-7x-4i+y+4x=5iy
Me tāpiri te 4x ki ngā taha e rua.
-3x-4i+y=5iy
Pahekotia te -7x me 4x, ka -3x.
-3x+y=5iy+4i
Me tāpiri te 4i ki ngā taha e rua.
-3x=5iy+4i-y
Tangohia te y mai i ngā taha e rua.
-3x=\left(-1+5i\right)y+4i
Pahekotia te 5iy me -y, ka \left(-1+5i\right)y.
\frac{-3x}{-3}=\frac{\left(-1+5i\right)y+4i}{-3}
Whakawehea ngā taha e rua ki te -3.
x=\frac{\left(-1+5i\right)y+4i}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x=\left(\frac{1}{3}-\frac{5}{3}i\right)y-\frac{4}{3}i
Whakawehe \left(-1+5i\right)y+4i ki te -3.
-7x-4i+y=-5i^{19}y-4x
Tātaihia te i mā te pū o 8, kia riro ko 1.
-7x-4i+y=-5\left(-i\right)y-4x
Tātaihia te i mā te pū o 19, kia riro ko -i.
-7x-4i+y=5iy-4x
Whakareatia te -5 ki te -i, ka 5i.
-7x-4i+y-5iy=-4x
Tangohia te 5iy mai i ngā taha e rua.
-7x-4i+\left(1-5i\right)y=-4x
Pahekotia te y me -5iy, ka \left(1-5i\right)y.
-4i+\left(1-5i\right)y=-4x+7x
Me tāpiri te 7x ki ngā taha e rua.
-4i+\left(1-5i\right)y=3x
Pahekotia te -4x me 7x, ka 3x.
\left(1-5i\right)y=3x+4i
Me tāpiri te 4i ki ngā taha e rua.
\frac{\left(1-5i\right)y}{1-5i}=\frac{3x+4i}{1-5i}
Whakawehea ngā taha e rua ki te 1-5i.
y=\frac{3x+4i}{1-5i}
Mā te whakawehe ki te 1-5i ka wetekia te whakareanga ki te 1-5i.
y=\left(\frac{3}{26}+\frac{15}{26}i\right)x+\left(-\frac{10}{13}+\frac{2}{13}i\right)
Whakawehe 3x+4i ki te 1-5i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}