Whakaoti mō x
x=-\frac{7}{8}=-0.875
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x+10\left(-\frac{1}{8}\right)-4=0
Whakahekea te hautanga \frac{2}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-6x+\frac{10\left(-1\right)}{8}-4=0
Tuhia te 10\left(-\frac{1}{8}\right) hei hautanga kotahi.
-6x+\frac{-10}{8}-4=0
Whakareatia te 10 ki te -1, ka -10.
-6x-\frac{5}{4}-4=0
Whakahekea te hautanga \frac{-10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-6x-\frac{5}{4}-\frac{16}{4}=0
Me tahuri te 4 ki te hautau \frac{16}{4}.
-6x+\frac{-5-16}{4}=0
Tā te mea he rite te tauraro o -\frac{5}{4} me \frac{16}{4}, me tango rāua mā te tango i ō raua taurunga.
-6x-\frac{21}{4}=0
Tangohia te 16 i te -5, ka -21.
-6x=\frac{21}{4}
Me tāpiri te \frac{21}{4} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{\frac{21}{4}}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{21}{4\left(-6\right)}
Tuhia te \frac{\frac{21}{4}}{-6} hei hautanga kotahi.
x=\frac{21}{-24}
Whakareatia te 4 ki te -6, ka -24.
x=-\frac{7}{8}
Whakahekea te hautanga \frac{21}{-24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}