Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-6x+10\left(-\frac{1}{8}\right)-4=0
Whakahekea te hautanga \frac{2}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-6x+\frac{10\left(-1\right)}{8}-4=0
Tuhia te 10\left(-\frac{1}{8}\right) hei hautanga kotahi.
-6x+\frac{-10}{8}-4=0
Whakareatia te 10 ki te -1, ka -10.
-6x-\frac{5}{4}-4=0
Whakahekea te hautanga \frac{-10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-6x-\frac{5}{4}-\frac{16}{4}=0
Me tahuri te 4 ki te hautau \frac{16}{4}.
-6x+\frac{-5-16}{4}=0
Tā te mea he rite te tauraro o -\frac{5}{4} me \frac{16}{4}, me tango rāua mā te tango i ō raua taurunga.
-6x-\frac{21}{4}=0
Tangohia te 16 i te -5, ka -21.
-6x=\frac{21}{4}
Me tāpiri te \frac{21}{4} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{\frac{21}{4}}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{21}{4\left(-6\right)}
Tuhia te \frac{\frac{21}{4}}{-6} hei hautanga kotahi.
x=\frac{21}{-24}
Whakareatia te 4 ki te -6, ka -24.
x=-\frac{7}{8}
Whakahekea te hautanga \frac{21}{-24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.