Aromātai
-\frac{2001x^{2}}{25000000000000000000}
Kimi Pārōnaki e ai ki x
-\frac{2001x}{12500000000000000000}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}}
Whakareatia te x ki te x, ka x^{2}.
-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Whakareatia te -667 ki te \frac{1}{100000000000}, ka -\frac{667}{100000000000}.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000}
Tātaihia te 10 mā te pū o 8, kia riro ko 100000000.
-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000}
Whakareatia te 5 ki te 100000000, ka 500000000.
-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2}
Whakawehea te 6x^{2} ki te 500000000, kia riro ko \frac{3}{250000000}x^{2}.
-\frac{2001}{25000000000000000000}x^{2}
Whakareatia te -\frac{667}{100000000000} ki te \frac{3}{250000000}, ka -\frac{2001}{25000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Whakareatia te -667 ki te \frac{1}{100000000000}, ka -\frac{667}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}})
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000})
Tātaihia te 10 mā te pū o 8, kia riro ko 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000})
Whakareatia te 5 ki te 100000000, ka 500000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2})
Whakawehea te 6x^{2} ki te 500000000, kia riro ko \frac{3}{250000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{25000000000000000000}x^{2})
Whakareatia te -\frac{667}{100000000000} ki te \frac{3}{250000000}, ka -\frac{2001}{25000000000000000000}.
2\left(-\frac{2001}{25000000000000000000}\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{2001}{12500000000000000000}x^{2-1}
Whakareatia 2 ki te -\frac{2001}{25000000000000000000}.
-\frac{2001}{12500000000000000000}x^{1}
Tango 1 mai i 2.
-\frac{2001}{12500000000000000000}x
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}