Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}}
Whakareatia te x ki te x, ka x^{2}.
-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Whakareatia te -667 ki te \frac{1}{100000000000}, ka -\frac{667}{100000000000}.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000}
Tātaihia te 10 mā te pū o 8, kia riro ko 100000000.
-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000}
Whakareatia te 5 ki te 100000000, ka 500000000.
-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2}
Whakawehea te 6x^{2} ki te 500000000, kia riro ko \frac{3}{250000000}x^{2}.
-\frac{2001}{25000000000000000000}x^{2}
Whakareatia te -\frac{667}{100000000000} ki te \frac{3}{250000000}, ka -\frac{2001}{25000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}})
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Whakareatia te -667 ki te \frac{1}{100000000000}, ka -\frac{667}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}})
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000})
Tātaihia te 10 mā te pū o 8, kia riro ko 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000})
Whakareatia te 5 ki te 100000000, ka 500000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2})
Whakawehea te 6x^{2} ki te 500000000, kia riro ko \frac{3}{250000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{25000000000000000000}x^{2})
Whakareatia te -\frac{667}{100000000000} ki te \frac{3}{250000000}, ka -\frac{2001}{25000000000000000000}.
2\left(-\frac{2001}{25000000000000000000}\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{2001}{12500000000000000000}x^{2-1}
Whakareatia 2 ki te -\frac{2001}{25000000000000000000}.
-\frac{2001}{12500000000000000000}x^{1}
Tango 1 mai i 2.
-\frac{2001}{12500000000000000000}x
Mō tētahi kupu t, t^{1}=t.