Aromātai
\frac{21c}{2}+6a-48b
Whakaroha
\frac{21c}{2}+6a-48b
Tohaina
Kua tāruatia ki te papatopenga
-6\left(-a+8b-\frac{7c}{4}\right)
Tuhia te 7\times \frac{c}{4} hei hautanga kotahi.
-6\left(\frac{4\left(-a+8b\right)}{4}-\frac{7c}{4}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -a+8b ki te \frac{4}{4}.
-6\times \frac{4\left(-a+8b\right)-7c}{4}
Tā te mea he rite te tauraro o \frac{4\left(-a+8b\right)}{4} me \frac{7c}{4}, me tango rāua mā te tango i ō raua taurunga.
-6\times \frac{-4a+32b-7c}{4}
Mahia ngā whakarea i roto o 4\left(-a+8b\right)-7c.
\frac{-6\left(-4a+32b-7c\right)}{4}
Tuhia te -6\times \frac{-4a+32b-7c}{4} hei hautanga kotahi.
-\frac{3}{2}\left(-4a+32b-7c\right)
Whakawehea te -6\left(-4a+32b-7c\right) ki te 4, kia riro ko -\frac{3}{2}\left(-4a+32b-7c\right).
-\frac{3}{2}\left(-4\right)a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{2} ki te -4a+32b-7c.
\frac{-3\left(-4\right)}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\left(-4\right) hei hautanga kotahi.
\frac{12}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te -4, ka 12.
6a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakawehea te 12 ki te 2, kia riro ko 6.
6a+\frac{-3\times 32}{2}b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\times 32 hei hautanga kotahi.
6a+\frac{-96}{2}b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te 32, ka -96.
6a-48b-\frac{3}{2}\left(-7\right)c
Whakawehea te -96 ki te 2, kia riro ko -48.
6a-48b+\frac{-3\left(-7\right)}{2}c
Tuhia te -\frac{3}{2}\left(-7\right) hei hautanga kotahi.
6a-48b+\frac{21}{2}c
Whakareatia te -3 ki te -7, ka 21.
-6\left(-a+8b-\frac{7c}{4}\right)
Tuhia te 7\times \frac{c}{4} hei hautanga kotahi.
-6\left(\frac{4\left(-a+8b\right)}{4}-\frac{7c}{4}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -a+8b ki te \frac{4}{4}.
-6\times \frac{4\left(-a+8b\right)-7c}{4}
Tā te mea he rite te tauraro o \frac{4\left(-a+8b\right)}{4} me \frac{7c}{4}, me tango rāua mā te tango i ō raua taurunga.
-6\times \frac{-4a+32b-7c}{4}
Mahia ngā whakarea i roto o 4\left(-a+8b\right)-7c.
\frac{-6\left(-4a+32b-7c\right)}{4}
Tuhia te -6\times \frac{-4a+32b-7c}{4} hei hautanga kotahi.
-\frac{3}{2}\left(-4a+32b-7c\right)
Whakawehea te -6\left(-4a+32b-7c\right) ki te 4, kia riro ko -\frac{3}{2}\left(-4a+32b-7c\right).
-\frac{3}{2}\left(-4\right)a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{2} ki te -4a+32b-7c.
\frac{-3\left(-4\right)}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\left(-4\right) hei hautanga kotahi.
\frac{12}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te -4, ka 12.
6a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakawehea te 12 ki te 2, kia riro ko 6.
6a+\frac{-3\times 32}{2}b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\times 32 hei hautanga kotahi.
6a+\frac{-96}{2}b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te 32, ka -96.
6a-48b-\frac{3}{2}\left(-7\right)c
Whakawehea te -96 ki te 2, kia riro ko -48.
6a-48b+\frac{-3\left(-7\right)}{2}c
Tuhia te -\frac{3}{2}\left(-7\right) hei hautanga kotahi.
6a-48b+\frac{21}{2}c
Whakareatia te -3 ki te -7, ka 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}