Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-6\left(-a+8b-\frac{7c}{4}\right)
Tuhia te 7\times \frac{c}{4} hei hautanga kotahi.
-6\left(\frac{4\left(-a+8b\right)}{4}-\frac{7c}{4}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -a+8b ki te \frac{4}{4}.
-6\times \frac{4\left(-a+8b\right)-7c}{4}
Tā te mea he rite te tauraro o \frac{4\left(-a+8b\right)}{4} me \frac{7c}{4}, me tango rāua mā te tango i ō raua taurunga.
-6\times \frac{-4a+32b-7c}{4}
Mahia ngā whakarea i roto o 4\left(-a+8b\right)-7c.
\frac{-6\left(-4a+32b-7c\right)}{4}
Tuhia te -6\times \frac{-4a+32b-7c}{4} hei hautanga kotahi.
-\frac{3}{2}\left(-4a+32b-7c\right)
Whakawehea te -6\left(-4a+32b-7c\right) ki te 4, kia riro ko -\frac{3}{2}\left(-4a+32b-7c\right).
-\frac{3}{2}\left(-4\right)a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{2} ki te -4a+32b-7c.
\frac{-3\left(-4\right)}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\left(-4\right) hei hautanga kotahi.
\frac{12}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te -4, ka 12.
6a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakawehea te 12 ki te 2, kia riro ko 6.
6a+\frac{-3\times 32}{2}b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\times 32 hei hautanga kotahi.
6a+\frac{-96}{2}b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te 32, ka -96.
6a-48b-\frac{3}{2}\left(-7\right)c
Whakawehea te -96 ki te 2, kia riro ko -48.
6a-48b+\frac{-3\left(-7\right)}{2}c
Tuhia te -\frac{3}{2}\left(-7\right) hei hautanga kotahi.
6a-48b+\frac{21}{2}c
Whakareatia te -3 ki te -7, ka 21.
-6\left(-a+8b-\frac{7c}{4}\right)
Tuhia te 7\times \frac{c}{4} hei hautanga kotahi.
-6\left(\frac{4\left(-a+8b\right)}{4}-\frac{7c}{4}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -a+8b ki te \frac{4}{4}.
-6\times \frac{4\left(-a+8b\right)-7c}{4}
Tā te mea he rite te tauraro o \frac{4\left(-a+8b\right)}{4} me \frac{7c}{4}, me tango rāua mā te tango i ō raua taurunga.
-6\times \frac{-4a+32b-7c}{4}
Mahia ngā whakarea i roto o 4\left(-a+8b\right)-7c.
\frac{-6\left(-4a+32b-7c\right)}{4}
Tuhia te -6\times \frac{-4a+32b-7c}{4} hei hautanga kotahi.
-\frac{3}{2}\left(-4a+32b-7c\right)
Whakawehea te -6\left(-4a+32b-7c\right) ki te 4, kia riro ko -\frac{3}{2}\left(-4a+32b-7c\right).
-\frac{3}{2}\left(-4\right)a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{2} ki te -4a+32b-7c.
\frac{-3\left(-4\right)}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\left(-4\right) hei hautanga kotahi.
\frac{12}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te -4, ka 12.
6a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Whakawehea te 12 ki te 2, kia riro ko 6.
6a+\frac{-3\times 32}{2}b-\frac{3}{2}\left(-7\right)c
Tuhia te -\frac{3}{2}\times 32 hei hautanga kotahi.
6a+\frac{-96}{2}b-\frac{3}{2}\left(-7\right)c
Whakareatia te -3 ki te 32, ka -96.
6a-48b-\frac{3}{2}\left(-7\right)c
Whakawehea te -96 ki te 2, kia riro ko -48.
6a-48b+\frac{-3\left(-7\right)}{2}c
Tuhia te -\frac{3}{2}\left(-7\right) hei hautanga kotahi.
6a-48b+\frac{21}{2}c
Whakareatia te -3 ki te -7, ka 21.