Aromātai
z^{3}-21z^{2}+33z-29
Kimi Pārōnaki e ai ki z
3\left(z^{2}-14z+11\right)
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
-5z-34+21 { z }^{ 2 } -45z+83z+ { z }^{ 3 } -42 { z }^{ 2 } +5=
Tohaina
Kua tāruatia ki te papatopenga
-50z-34+21z^{2}+83z+z^{3}-42z^{2}+5
Pahekotia te -5z me -45z, ka -50z.
33z-34+21z^{2}+z^{3}-42z^{2}+5
Pahekotia te -50z me 83z, ka 33z.
33z-34-21z^{2}+z^{3}+5
Pahekotia te 21z^{2} me -42z^{2}, ka -21z^{2}.
33z-29-21z^{2}+z^{3}
Tāpirihia te -34 ki te 5, ka -29.
\frac{\mathrm{d}}{\mathrm{d}z}(-50z-34+21z^{2}+83z+z^{3}-42z^{2}+5)
Pahekotia te -5z me -45z, ka -50z.
\frac{\mathrm{d}}{\mathrm{d}z}(33z-34+21z^{2}+z^{3}-42z^{2}+5)
Pahekotia te -50z me 83z, ka 33z.
\frac{\mathrm{d}}{\mathrm{d}z}(33z-34-21z^{2}+z^{3}+5)
Pahekotia te 21z^{2} me -42z^{2}, ka -21z^{2}.
\frac{\mathrm{d}}{\mathrm{d}z}(33z-29-21z^{2}+z^{3})
Tāpirihia te -34 ki te 5, ka -29.
33z^{1-1}+2\left(-21\right)z^{2-1}+3z^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
33z^{0}+2\left(-21\right)z^{2-1}+3z^{3-1}
Tango 1 mai i 1.
33z^{0}-42z^{2-1}+3z^{3-1}
Whakareatia 2 ki te -21.
33z^{0}-42z^{1}+3z^{3-1}
Tango 1 mai i 2.
33z^{0}-42z^{1}+3z^{2}
Tango 1 mai i 3.
33z^{0}-42z+3z^{2}
Mō tētahi kupu t, t^{1}=t.
33\times 1-42z+3z^{2}
Mō tētahi kupu t mahue te 0, t^{0}=1.
33-42z+3z^{2}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}