Whakaoti mō t
t = \frac{\sqrt{23181} + 51}{98} \approx 2.074011008
t=\frac{51-\sqrt{23181}}{98}\approx -1.033194681
Tohaina
Kua tāruatia ki te papatopenga
49t^{2}-51t=105
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
49t^{2}-51t-105=105-105
Me tango 105 mai i ngā taha e rua o te whārite.
49t^{2}-51t-105=0
Mā te tango i te 105 i a ia ake anō ka toe ko te 0.
t=\frac{-\left(-51\right)±\sqrt{\left(-51\right)^{2}-4\times 49\left(-105\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, -51 mō b, me -105 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-51\right)±\sqrt{2601-4\times 49\left(-105\right)}}{2\times 49}
Pūrua -51.
t=\frac{-\left(-51\right)±\sqrt{2601-196\left(-105\right)}}{2\times 49}
Whakareatia -4 ki te 49.
t=\frac{-\left(-51\right)±\sqrt{2601+20580}}{2\times 49}
Whakareatia -196 ki te -105.
t=\frac{-\left(-51\right)±\sqrt{23181}}{2\times 49}
Tāpiri 2601 ki te 20580.
t=\frac{51±\sqrt{23181}}{2\times 49}
Ko te tauaro o -51 ko 51.
t=\frac{51±\sqrt{23181}}{98}
Whakareatia 2 ki te 49.
t=\frac{\sqrt{23181}+51}{98}
Nā, me whakaoti te whārite t=\frac{51±\sqrt{23181}}{98} ina he tāpiri te ±. Tāpiri 51 ki te \sqrt{23181}.
t=\frac{51-\sqrt{23181}}{98}
Nā, me whakaoti te whārite t=\frac{51±\sqrt{23181}}{98} ina he tango te ±. Tango \sqrt{23181} mai i 51.
t=\frac{\sqrt{23181}+51}{98} t=\frac{51-\sqrt{23181}}{98}
Kua oti te whārite te whakatau.
49t^{2}-51t=105
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{49t^{2}-51t}{49}=\frac{105}{49}
Whakawehea ngā taha e rua ki te 49.
t^{2}-\frac{51}{49}t=\frac{105}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
t^{2}-\frac{51}{49}t=\frac{15}{7}
Whakahekea te hautanga \frac{105}{49} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
t^{2}-\frac{51}{49}t+\left(-\frac{51}{98}\right)^{2}=\frac{15}{7}+\left(-\frac{51}{98}\right)^{2}
Whakawehea te -\frac{51}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{51}{98}. Nā, tāpiria te pūrua o te -\frac{51}{98} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{51}{49}t+\frac{2601}{9604}=\frac{15}{7}+\frac{2601}{9604}
Pūruatia -\frac{51}{98} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{51}{49}t+\frac{2601}{9604}=\frac{23181}{9604}
Tāpiri \frac{15}{7} ki te \frac{2601}{9604} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{51}{98}\right)^{2}=\frac{23181}{9604}
Tauwehea t^{2}-\frac{51}{49}t+\frac{2601}{9604}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{51}{98}\right)^{2}}=\sqrt{\frac{23181}{9604}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{51}{98}=\frac{\sqrt{23181}}{98} t-\frac{51}{98}=-\frac{\sqrt{23181}}{98}
Whakarūnātia.
t=\frac{\sqrt{23181}+51}{98} t=\frac{51-\sqrt{23181}}{98}
Me tāpiri \frac{51}{98} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}