Whakaoti mō x
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}\approx 0.0000898
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}\approx 0.0000002
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
-500000 { x }^{ 2 } +45x-9 \times { 10 }^{ -6 } = 0
Tohaina
Kua tāruatia ki te papatopenga
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Whakareatia te 9 ki te \frac{1}{1000000}, ka \frac{9}{1000000}.
x=\frac{-45±\sqrt{45^{2}-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -500000 mō a, 45 mō b, me -\frac{9}{1000000} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Pūrua 45.
x=\frac{-45±\sqrt{2025+2000000\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Whakareatia -4 ki te -500000.
x=\frac{-45±\sqrt{2025-18}}{2\left(-500000\right)}
Whakareatia 2000000 ki te -\frac{9}{1000000}.
x=\frac{-45±\sqrt{2007}}{2\left(-500000\right)}
Tāpiri 2025 ki te -18.
x=\frac{-45±3\sqrt{223}}{2\left(-500000\right)}
Tuhia te pūtakerua o te 2007.
x=\frac{-45±3\sqrt{223}}{-1000000}
Whakareatia 2 ki te -500000.
x=\frac{3\sqrt{223}-45}{-1000000}
Nā, me whakaoti te whārite x=\frac{-45±3\sqrt{223}}{-1000000} ina he tāpiri te ±. Tāpiri -45 ki te 3\sqrt{223}.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Whakawehe -45+3\sqrt{223} ki te -1000000.
x=\frac{-3\sqrt{223}-45}{-1000000}
Nā, me whakaoti te whārite x=\frac{-45±3\sqrt{223}}{-1000000} ina he tango te ±. Tango 3\sqrt{223} mai i -45.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Whakawehe -45-3\sqrt{223} ki te -1000000.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Kua oti te whārite te whakatau.
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Whakareatia te 9 ki te \frac{1}{1000000}, ka \frac{9}{1000000}.
-500000x^{2}+45x=\frac{9}{1000000}
Me tāpiri te \frac{9}{1000000} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-500000x^{2}+45x}{-500000}=\frac{\frac{9}{1000000}}{-500000}
Whakawehea ngā taha e rua ki te -500000.
x^{2}+\frac{45}{-500000}x=\frac{\frac{9}{1000000}}{-500000}
Mā te whakawehe ki te -500000 ka wetekia te whakareanga ki te -500000.
x^{2}-\frac{9}{100000}x=\frac{\frac{9}{1000000}}{-500000}
Whakahekea te hautanga \frac{45}{-500000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{9}{100000}x=-\frac{9}{500000000000}
Whakawehe \frac{9}{1000000} ki te -500000.
x^{2}-\frac{9}{100000}x+\left(-\frac{9}{200000}\right)^{2}=-\frac{9}{500000000000}+\left(-\frac{9}{200000}\right)^{2}
Whakawehea te -\frac{9}{100000}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{200000}. Nā, tāpiria te pūrua o te -\frac{9}{200000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=-\frac{9}{500000000000}+\frac{81}{40000000000}
Pūruatia -\frac{9}{200000} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=\frac{2007}{1000000000000}
Tāpiri -\frac{9}{500000000000} ki te \frac{81}{40000000000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{200000}\right)^{2}=\frac{2007}{1000000000000}
Tauwehea x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{200000}\right)^{2}}=\sqrt{\frac{2007}{1000000000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{200000}=\frac{3\sqrt{223}}{1000000} x-\frac{9}{200000}=-\frac{3\sqrt{223}}{1000000}
Whakarūnātia.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Me tāpiri \frac{9}{200000} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}