Whakaoti mō x
x=180
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x^{2}+1800x-130000=32000
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-5x^{2}+1800x-130000-32000=32000-32000
Me tango 32000 mai i ngā taha e rua o te whārite.
-5x^{2}+1800x-130000-32000=0
Mā te tango i te 32000 i a ia ake anō ka toe ko te 0.
-5x^{2}+1800x-162000=0
Tango 32000 mai i -130000.
x=\frac{-1800±\sqrt{1800^{2}-4\left(-5\right)\left(-162000\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 1800 mō b, me -162000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1800±\sqrt{3240000-4\left(-5\right)\left(-162000\right)}}{2\left(-5\right)}
Pūrua 1800.
x=\frac{-1800±\sqrt{3240000+20\left(-162000\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-1800±\sqrt{3240000-3240000}}{2\left(-5\right)}
Whakareatia 20 ki te -162000.
x=\frac{-1800±\sqrt{0}}{2\left(-5\right)}
Tāpiri 3240000 ki te -3240000.
x=-\frac{1800}{2\left(-5\right)}
Tuhia te pūtakerua o te 0.
x=-\frac{1800}{-10}
Whakareatia 2 ki te -5.
x=180
Whakawehe -1800 ki te -10.
-5x^{2}+1800x-130000=32000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-5x^{2}+1800x-130000-\left(-130000\right)=32000-\left(-130000\right)
Me tāpiri 130000 ki ngā taha e rua o te whārite.
-5x^{2}+1800x=32000-\left(-130000\right)
Mā te tango i te -130000 i a ia ake anō ka toe ko te 0.
-5x^{2}+1800x=162000
Tango -130000 mai i 32000.
\frac{-5x^{2}+1800x}{-5}=\frac{162000}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\frac{1800}{-5}x=\frac{162000}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}-360x=\frac{162000}{-5}
Whakawehe 1800 ki te -5.
x^{2}-360x=-32400
Whakawehe 162000 ki te -5.
x^{2}-360x+\left(-180\right)^{2}=-32400+\left(-180\right)^{2}
Whakawehea te -360, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -180. Nā, tāpiria te pūrua o te -180 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-360x+32400=-32400+32400
Pūrua -180.
x^{2}-360x+32400=0
Tāpiri -32400 ki te 32400.
\left(x-180\right)^{2}=0
Tauwehea x^{2}-360x+32400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-180\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-180=0 x-180=0
Whakarūnātia.
x=180 x=180
Me tāpiri 180 ki ngā taha e rua o te whārite.
x=180
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}