Whakaoti mō x (complex solution)
x=-i
x=i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x^{2}-5=0
Tangohia te 115 i te 110, ka -5.
-5x^{2}=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{5}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}=-1
Whakawehea te 5 ki te -5, kia riro ko -1.
x=i x=-i
Kua oti te whārite te whakatau.
-5x^{2}-5=0
Tangohia te 115 i te 110, ka -5.
x=\frac{0±\sqrt{0^{2}-4\left(-5\right)\left(-5\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5\right)\left(-5\right)}}{2\left(-5\right)}
Pūrua 0.
x=\frac{0±\sqrt{20\left(-5\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{0±\sqrt{-100}}{2\left(-5\right)}
Whakareatia 20 ki te -5.
x=\frac{0±10i}{2\left(-5\right)}
Tuhia te pūtakerua o te -100.
x=\frac{0±10i}{-10}
Whakareatia 2 ki te -5.
x=-i
Nā, me whakaoti te whārite x=\frac{0±10i}{-10} ina he tāpiri te ±.
x=i
Nā, me whakaoti te whārite x=\frac{0±10i}{-10} ina he tango te ±.
x=-i x=i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}