Whakaoti mō v
v\leq \frac{5}{12}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
-5 \left( 24v-1 \cdot 4 \right) \geq -6 \left( 08+12v \right)
Tohaina
Kua tāruatia ki te papatopenga
-5\left(24v-4\right)\geq -6\left(0\times 8+12v\right)
Whakareatia te 1 ki te 4, ka 4.
-120v+20\geq -6\left(0\times 8+12v\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 24v-4.
-120v+20\geq -6\times 12v
Whakareatia te 0 ki te 8, ka 0.
-120v+20\geq -72v
Whakareatia te -6 ki te 12, ka -72.
-120v+20+72v\geq 0
Me tāpiri te 72v ki ngā taha e rua.
-48v+20\geq 0
Pahekotia te -120v me 72v, ka -48v.
-48v\geq -20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
v\leq \frac{-20}{-48}
Whakawehea ngā taha e rua ki te -48. I te mea he tōraro a -48, ka huri te ahunga koreōrite.
v\leq \frac{5}{12}
Whakahekea te hautanga \frac{-20}{-48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}