Aromātai
-\frac{2885}{12}\approx -240.416666667
Tauwehe
-\frac{2885}{12} = -240\frac{5}{12} = -240.41666666666666
Tohaina
Kua tāruatia ki te papatopenga
-\frac{5}{12}-\left(-16\left(-15\right)\right)
Ka taea te hautanga \frac{-5}{12} te tuhi anō ko -\frac{5}{12} mā te tango i te tohu tōraro.
-\frac{5}{12}-240
Whakareatia te -16 ki te -15, ka 240.
-\frac{5}{12}-\frac{2880}{12}
Me tahuri te 240 ki te hautau \frac{2880}{12}.
\frac{-5-2880}{12}
Tā te mea he rite te tauraro o -\frac{5}{12} me \frac{2880}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2885}{12}
Tangohia te 2880 i te -5, ka -2885.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}