Whakaoti mō x
x=1
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x^{2}+4x=2x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -4x ki te x-1.
-4x^{2}+4x-2x=-2
Tangohia te 2x mai i ngā taha e rua.
-4x^{2}+2x=-2
Pahekotia te 4x me -2x, ka 2x.
-4x^{2}+2x+2=0
Me tāpiri te 2 ki ngā taha e rua.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 2 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)\times 2}}{2\left(-4\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+16\times 2}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-2±\sqrt{4+32}}{2\left(-4\right)}
Whakareatia 16 ki te 2.
x=\frac{-2±\sqrt{36}}{2\left(-4\right)}
Tāpiri 4 ki te 32.
x=\frac{-2±6}{2\left(-4\right)}
Tuhia te pūtakerua o te 36.
x=\frac{-2±6}{-8}
Whakareatia 2 ki te -4.
x=\frac{4}{-8}
Nā, me whakaoti te whārite x=\frac{-2±6}{-8} ina he tāpiri te ±. Tāpiri -2 ki te 6.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{4}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{8}{-8}
Nā, me whakaoti te whārite x=\frac{-2±6}{-8} ina he tango te ±. Tango 6 mai i -2.
x=1
Whakawehe -8 ki te -8.
x=-\frac{1}{2} x=1
Kua oti te whārite te whakatau.
-4x^{2}+4x=2x-2
Whakamahia te āhuatanga tohatoha hei whakarea te -4x ki te x-1.
-4x^{2}+4x-2x=-2
Tangohia te 2x mai i ngā taha e rua.
-4x^{2}+2x=-2
Pahekotia te 4x me -2x, ka 2x.
\frac{-4x^{2}+2x}{-4}=-\frac{2}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{2}{-4}x=-\frac{2}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-\frac{1}{2}x=-\frac{2}{-4}
Whakahekea te hautanga \frac{2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Tāpiri \frac{1}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Whakarūnātia.
x=1 x=-\frac{1}{2}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}