Whakaoti mō x
x = \frac{3 \sqrt{275305} + 1535}{49} \approx 63.450723444
x=\frac{1535-3\sqrt{275305}}{49}\approx -0.79766222
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4.9x^{2}+307x+248=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-307±\sqrt{307^{2}-4\left(-4.9\right)\times 248}}{2\left(-4.9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4.9 mō a, 307 mō b, me 248 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-307±\sqrt{94249-4\left(-4.9\right)\times 248}}{2\left(-4.9\right)}
Pūrua 307.
x=\frac{-307±\sqrt{94249+19.6\times 248}}{2\left(-4.9\right)}
Whakareatia -4 ki te -4.9.
x=\frac{-307±\sqrt{94249+4860.8}}{2\left(-4.9\right)}
Whakareatia 19.6 ki te 248.
x=\frac{-307±\sqrt{99109.8}}{2\left(-4.9\right)}
Tāpiri 94249 ki te 4860.8.
x=\frac{-307±\frac{3\sqrt{275305}}{5}}{2\left(-4.9\right)}
Tuhia te pūtakerua o te 99109.8.
x=\frac{-307±\frac{3\sqrt{275305}}{5}}{-9.8}
Whakareatia 2 ki te -4.9.
x=\frac{\frac{3\sqrt{275305}}{5}-307}{-9.8}
Nā, me whakaoti te whārite x=\frac{-307±\frac{3\sqrt{275305}}{5}}{-9.8} ina he tāpiri te ±. Tāpiri -307 ki te \frac{3\sqrt{275305}}{5}.
x=\frac{1535-3\sqrt{275305}}{49}
Whakawehe -307+\frac{3\sqrt{275305}}{5} ki te -9.8 mā te whakarea -307+\frac{3\sqrt{275305}}{5} ki te tau huripoki o -9.8.
x=\frac{-\frac{3\sqrt{275305}}{5}-307}{-9.8}
Nā, me whakaoti te whārite x=\frac{-307±\frac{3\sqrt{275305}}{5}}{-9.8} ina he tango te ±. Tango \frac{3\sqrt{275305}}{5} mai i -307.
x=\frac{3\sqrt{275305}+1535}{49}
Whakawehe -307-\frac{3\sqrt{275305}}{5} ki te -9.8 mā te whakarea -307-\frac{3\sqrt{275305}}{5} ki te tau huripoki o -9.8.
x=\frac{1535-3\sqrt{275305}}{49} x=\frac{3\sqrt{275305}+1535}{49}
Kua oti te whārite te whakatau.
-4.9x^{2}+307x+248=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-4.9x^{2}+307x+248-248=-248
Me tango 248 mai i ngā taha e rua o te whārite.
-4.9x^{2}+307x=-248
Mā te tango i te 248 i a ia ake anō ka toe ko te 0.
\frac{-4.9x^{2}+307x}{-4.9}=-\frac{248}{-4.9}
Whakawehea ngā taha e rua o te whārite ki te -4.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{307}{-4.9}x=-\frac{248}{-4.9}
Mā te whakawehe ki te -4.9 ka wetekia te whakareanga ki te -4.9.
x^{2}-\frac{3070}{49}x=-\frac{248}{-4.9}
Whakawehe 307 ki te -4.9 mā te whakarea 307 ki te tau huripoki o -4.9.
x^{2}-\frac{3070}{49}x=\frac{2480}{49}
Whakawehe -248 ki te -4.9 mā te whakarea -248 ki te tau huripoki o -4.9.
x^{2}-\frac{3070}{49}x+\left(-\frac{1535}{49}\right)^{2}=\frac{2480}{49}+\left(-\frac{1535}{49}\right)^{2}
Whakawehea te -\frac{3070}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1535}{49}. Nā, tāpiria te pūrua o te -\frac{1535}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3070}{49}x+\frac{2356225}{2401}=\frac{2480}{49}+\frac{2356225}{2401}
Pūruatia -\frac{1535}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3070}{49}x+\frac{2356225}{2401}=\frac{2477745}{2401}
Tāpiri \frac{2480}{49} ki te \frac{2356225}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1535}{49}\right)^{2}=\frac{2477745}{2401}
Tauwehea x^{2}-\frac{3070}{49}x+\frac{2356225}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1535}{49}\right)^{2}}=\sqrt{\frac{2477745}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1535}{49}=\frac{3\sqrt{275305}}{49} x-\frac{1535}{49}=-\frac{3\sqrt{275305}}{49}
Whakarūnātia.
x=\frac{3\sqrt{275305}+1535}{49} x=\frac{1535-3\sqrt{275305}}{49}
Me tāpiri \frac{1535}{49} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}