Whakaoti mō x (complex solution)
x=-i
x=i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x^{2}=-2+4
Me tāpiri te 4 ki ngā taha e rua.
-2x^{2}=2
Tāpirihia te -2 ki te 4, ka 2.
x^{2}=\frac{2}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}=-1
Whakawehea te 2 ki te -2, kia riro ko -1.
x=i x=-i
Kua oti te whārite te whakatau.
-4-2x^{2}+2=0
Me tāpiri te 2 ki ngā taha e rua.
-2-2x^{2}=0
Tāpirihia te -4 ki te 2, ka -2.
-2x^{2}-2=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Pūrua 0.
x=\frac{0±\sqrt{8\left(-2\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{0±\sqrt{-16}}{2\left(-2\right)}
Whakareatia 8 ki te -2.
x=\frac{0±4i}{2\left(-2\right)}
Tuhia te pūtakerua o te -16.
x=\frac{0±4i}{-4}
Whakareatia 2 ki te -2.
x=-i
Nā, me whakaoti te whārite x=\frac{0±4i}{-4} ina he tāpiri te ±.
x=i
Nā, me whakaoti te whārite x=\frac{0±4i}{-4} ina he tango te ±.
x=-i x=i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}