Whakaoti mō x
x=\frac{3\sqrt{17}-11}{4}\approx 0.342329219
x=\frac{-3\sqrt{17}-11}{4}\approx -5.842329219
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x-2x^{2}=7x-4
Tangohia te 2x^{2} mai i ngā taha e rua.
-4x-2x^{2}-7x=-4
Tangohia te 7x mai i ngā taha e rua.
-11x-2x^{2}=-4
Pahekotia te -4x me -7x, ka -11x.
-11x-2x^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
-2x^{2}-11x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -11 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-2\right)\times 4}}{2\left(-2\right)}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121+8\times 4}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-11\right)±\sqrt{121+32}}{2\left(-2\right)}
Whakareatia 8 ki te 4.
x=\frac{-\left(-11\right)±\sqrt{153}}{2\left(-2\right)}
Tāpiri 121 ki te 32.
x=\frac{-\left(-11\right)±3\sqrt{17}}{2\left(-2\right)}
Tuhia te pūtakerua o te 153.
x=\frac{11±3\sqrt{17}}{2\left(-2\right)}
Ko te tauaro o -11 ko 11.
x=\frac{11±3\sqrt{17}}{-4}
Whakareatia 2 ki te -2.
x=\frac{3\sqrt{17}+11}{-4}
Nā, me whakaoti te whārite x=\frac{11±3\sqrt{17}}{-4} ina he tāpiri te ±. Tāpiri 11 ki te 3\sqrt{17}.
x=\frac{-3\sqrt{17}-11}{4}
Whakawehe 11+3\sqrt{17} ki te -4.
x=\frac{11-3\sqrt{17}}{-4}
Nā, me whakaoti te whārite x=\frac{11±3\sqrt{17}}{-4} ina he tango te ±. Tango 3\sqrt{17} mai i 11.
x=\frac{3\sqrt{17}-11}{4}
Whakawehe 11-3\sqrt{17} ki te -4.
x=\frac{-3\sqrt{17}-11}{4} x=\frac{3\sqrt{17}-11}{4}
Kua oti te whārite te whakatau.
-4x-2x^{2}=7x-4
Tangohia te 2x^{2} mai i ngā taha e rua.
-4x-2x^{2}-7x=-4
Tangohia te 7x mai i ngā taha e rua.
-11x-2x^{2}=-4
Pahekotia te -4x me -7x, ka -11x.
-2x^{2}-11x=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}-11x}{-2}=-\frac{4}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{11}{-2}\right)x=-\frac{4}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+\frac{11}{2}x=-\frac{4}{-2}
Whakawehe -11 ki te -2.
x^{2}+\frac{11}{2}x=2
Whakawehe -4 ki te -2.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=2+\left(\frac{11}{4}\right)^{2}
Whakawehea te \frac{11}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{4}. Nā, tāpiria te pūrua o te \frac{11}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{2}x+\frac{121}{16}=2+\frac{121}{16}
Pūruatia \frac{11}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{153}{16}
Tāpiri 2 ki te \frac{121}{16}.
\left(x+\frac{11}{4}\right)^{2}=\frac{153}{16}
Tauwehea x^{2}+\frac{11}{2}x+\frac{121}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{153}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{4}=\frac{3\sqrt{17}}{4} x+\frac{11}{4}=-\frac{3\sqrt{17}}{4}
Whakarūnātia.
x=\frac{3\sqrt{17}-11}{4} x=\frac{-3\sqrt{17}-11}{4}
Me tango \frac{11}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}