-4(- { \left( \sqrt{ (x \div 2)-3 } \right) }^{ 2 } -3
Aromātai
2x
Kimi Pārōnaki e ai ki x
2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4\left(-\left(\sqrt{\frac{x}{2}-\frac{3\times 2}{2}}\right)^{2}-3\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
-4\left(-\left(\sqrt{\frac{x-3\times 2}{2}}\right)^{2}-3\right)
Tā te mea he rite te tauraro o \frac{x}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
-4\left(-\left(\sqrt{\frac{x-6}{2}}\right)^{2}-3\right)
Mahia ngā whakarea i roto o x-3\times 2.
-4\left(-\frac{x-6}{2}-3\right)
Tātaihia te \sqrt{\frac{x-6}{2}} mā te pū o 2, kia riro ko \frac{x-6}{2}.
-4\left(-\frac{x-6}{2}-\frac{3\times 2}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
-4\times \frac{-\left(x-6\right)-3\times 2}{2}
Tā te mea he rite te tauraro o -\frac{x-6}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
-4\times \frac{-x+6-6}{2}
Mahia ngā whakarea i roto o -\left(x-6\right)-3\times 2.
-4\times \frac{-x}{2}
Whakakotahitia ngā kupu rite i -x+6-6.
-2\left(-1\right)x
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
2x
Whakareatia te -2 ki te -1, ka 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x}{2}-\frac{3\times 2}{2}}\right)^{2}-3\right))
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x-3\times 2}{2}}\right)^{2}-3\right))
Tā te mea he rite te tauraro o \frac{x}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x-6}{2}}\right)^{2}-3\right))
Mahia ngā whakarea i roto o x-3\times 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\frac{x-6}{2}-3\right))
Tātaihia te \sqrt{\frac{x-6}{2}} mā te pū o 2, kia riro ko \frac{x-6}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\frac{x-6}{2}-\frac{3\times 2}{2}\right))
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-\left(x-6\right)-3\times 2}{2})
Tā te mea he rite te tauraro o -\frac{x-6}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-x+6-6}{2})
Mahia ngā whakarea i roto o -\left(x-6\right)-3\times 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-x}{2})
Whakakotahitia ngā kupu rite i -x+6-6.
\frac{\mathrm{d}}{\mathrm{d}x}(-2\left(-1\right)x)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(2x)
Whakareatia te -2 ki te -1, ka 2.
2x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
2x^{0}
Tango 1 mai i 1.
2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
2
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}