Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-4\left(-\left(\sqrt{\frac{x}{2}-\frac{3\times 2}{2}}\right)^{2}-3\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
-4\left(-\left(\sqrt{\frac{x-3\times 2}{2}}\right)^{2}-3\right)
Tā te mea he rite te tauraro o \frac{x}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
-4\left(-\left(\sqrt{\frac{x-6}{2}}\right)^{2}-3\right)
Mahia ngā whakarea i roto o x-3\times 2.
-4\left(-\frac{x-6}{2}-3\right)
Tātaihia te \sqrt{\frac{x-6}{2}} mā te pū o 2, kia riro ko \frac{x-6}{2}.
-4\left(-\frac{x-6}{2}-\frac{3\times 2}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
-4\times \frac{-\left(x-6\right)-3\times 2}{2}
Tā te mea he rite te tauraro o -\frac{x-6}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
-4\times \frac{-x+6-6}{2}
Mahia ngā whakarea i roto o -\left(x-6\right)-3\times 2.
-4\times \frac{-x}{2}
Whakakotahitia ngā kupu rite i -x+6-6.
-2\left(-1\right)x
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
2x
Whakareatia te -2 ki te -1, ka 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x}{2}-\frac{3\times 2}{2}}\right)^{2}-3\right))
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x-3\times 2}{2}}\right)^{2}-3\right))
Tā te mea he rite te tauraro o \frac{x}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x-6}{2}}\right)^{2}-3\right))
Mahia ngā whakarea i roto o x-3\times 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\frac{x-6}{2}-3\right))
Tātaihia te \sqrt{\frac{x-6}{2}} mā te pū o 2, kia riro ko \frac{x-6}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\frac{x-6}{2}-\frac{3\times 2}{2}\right))
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-\left(x-6\right)-3\times 2}{2})
Tā te mea he rite te tauraro o -\frac{x-6}{2} me \frac{3\times 2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-x+6-6}{2})
Mahia ngā whakarea i roto o -\left(x-6\right)-3\times 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-x}{2})
Whakakotahitia ngā kupu rite i -x+6-6.
\frac{\mathrm{d}}{\mathrm{d}x}(-2\left(-1\right)x)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(2x)
Whakareatia te -2 ki te -1, ka 2.
2x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
2x^{0}
Tango 1 mai i 1.
2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
2
Mō tētahi kupu t, t\times 1=t me 1t=t.