Whakaoti mō a
a=\frac{1}{4}=0.25
a=-1
Tohaina
Kua tāruatia ki te papatopenga
a+b=-3 ab=-4=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -4a^{2}+aa+ba+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
a=1 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-4a^{2}+a\right)+\left(-4a+1\right)
Tuhia anō te -4a^{2}-3a+1 hei \left(-4a^{2}+a\right)+\left(-4a+1\right).
-a\left(4a-1\right)-\left(4a-1\right)
Tauwehea te -a i te tuatahi me te -1 i te rōpū tuarua.
\left(4a-1\right)\left(-a-1\right)
Whakatauwehea atu te kīanga pātahi 4a-1 mā te whakamahi i te āhuatanga tātai tohatoha.
a=\frac{1}{4} a=-1
Hei kimi otinga whārite, me whakaoti te 4a-1=0 me te -a-1=0.
-4a^{2}-3a+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, -3 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2\left(-4\right)}
Pūrua -3.
a=\frac{-\left(-3\right)±\sqrt{9+16}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
a=\frac{-\left(-3\right)±\sqrt{25}}{2\left(-4\right)}
Tāpiri 9 ki te 16.
a=\frac{-\left(-3\right)±5}{2\left(-4\right)}
Tuhia te pūtakerua o te 25.
a=\frac{3±5}{2\left(-4\right)}
Ko te tauaro o -3 ko 3.
a=\frac{3±5}{-8}
Whakareatia 2 ki te -4.
a=\frac{8}{-8}
Nā, me whakaoti te whārite a=\frac{3±5}{-8} ina he tāpiri te ±. Tāpiri 3 ki te 5.
a=-1
Whakawehe 8 ki te -8.
a=-\frac{2}{-8}
Nā, me whakaoti te whārite a=\frac{3±5}{-8} ina he tango te ±. Tango 5 mai i 3.
a=\frac{1}{4}
Whakahekea te hautanga \frac{-2}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a=-1 a=\frac{1}{4}
Kua oti te whārite te whakatau.
-4a^{2}-3a+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-4a^{2}-3a+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
-4a^{2}-3a=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{-4a^{2}-3a}{-4}=-\frac{1}{-4}
Whakawehea ngā taha e rua ki te -4.
a^{2}+\left(-\frac{3}{-4}\right)a=-\frac{1}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
a^{2}+\frac{3}{4}a=-\frac{1}{-4}
Whakawehe -3 ki te -4.
a^{2}+\frac{3}{4}a=\frac{1}{4}
Whakawehe -1 ki te -4.
a^{2}+\frac{3}{4}a+\left(\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(\frac{3}{8}\right)^{2}
Whakawehea te \frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{8}. Nā, tāpiria te pūrua o te \frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+\frac{3}{4}a+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
Pūruatia \frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}+\frac{3}{4}a+\frac{9}{64}=\frac{25}{64}
Tāpiri \frac{1}{4} ki te \frac{9}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a+\frac{3}{8}\right)^{2}=\frac{25}{64}
Tauwehea a^{2}+\frac{3}{4}a+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{3}{8}=\frac{5}{8} a+\frac{3}{8}=-\frac{5}{8}
Whakarūnātia.
a=\frac{1}{4} a=-1
Me tango \frac{3}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}