Tauwehe
-\left(x+1\right)\left(3x+1\right)
Aromātai
-\left(x+1\right)\left(3x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-4 ab=-3\left(-1\right)=3
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -3x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-3x^{2}-x\right)+\left(-3x-1\right)
Tuhia anō te -3x^{2}-4x-1 hei \left(-3x^{2}-x\right)+\left(-3x-1\right).
-x\left(3x+1\right)-\left(3x+1\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(3x+1\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 3x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
-3x^{2}-4x-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+12\left(-1\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\left(-3\right)}
Whakareatia 12 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\left(-3\right)}
Tāpiri 16 ki te -12.
x=\frac{-\left(-4\right)±2}{2\left(-3\right)}
Tuhia te pūtakerua o te 4.
x=\frac{4±2}{2\left(-3\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±2}{-6}
Whakareatia 2 ki te -3.
x=\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{4±2}{-6} ina he tāpiri te ±. Tāpiri 4 ki te 2.
x=-1
Whakawehe 6 ki te -6.
x=\frac{2}{-6}
Nā, me whakaoti te whārite x=\frac{4±2}{-6} ina he tango te ±. Tango 2 mai i 4.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-3x^{2}-4x-1=-3\left(x-\left(-1\right)\right)\left(x-\left(-\frac{1}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -\frac{1}{3} mō te x_{2}.
-3x^{2}-4x-1=-3\left(x+1\right)\left(x+\frac{1}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-3x^{2}-4x-1=-3\left(x+1\right)\times \frac{-3x-1}{-3}
Tāpiri \frac{1}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-3x^{2}-4x-1=\left(x+1\right)\left(-3x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te -3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}