Tauwehe
\left(12-x\right)\left(3x-2\right)
Aromātai
\left(12-x\right)\left(3x-2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=38 ab=-3\left(-24\right)=72
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -3x^{2}+ax+bx-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,72 2,36 3,24 4,18 6,12 8,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Tātaihia te tapeke mō ia takirua.
a=36 b=2
Ko te otinga te takirua ka hoatu i te tapeke 38.
\left(-3x^{2}+36x\right)+\left(2x-24\right)
Tuhia anō te -3x^{2}+38x-24 hei \left(-3x^{2}+36x\right)+\left(2x-24\right).
3x\left(-x+12\right)-2\left(-x+12\right)
Tauwehea te 3x i te tuatahi me te -2 i te rōpū tuarua.
\left(-x+12\right)\left(3x-2\right)
Whakatauwehea atu te kīanga pātahi -x+12 mā te whakamahi i te āhuatanga tātai tohatoha.
-3x^{2}+38x-24=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-38±\sqrt{38^{2}-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-38±\sqrt{1444-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
Pūrua 38.
x=\frac{-38±\sqrt{1444+12\left(-24\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-38±\sqrt{1444-288}}{2\left(-3\right)}
Whakareatia 12 ki te -24.
x=\frac{-38±\sqrt{1156}}{2\left(-3\right)}
Tāpiri 1444 ki te -288.
x=\frac{-38±34}{2\left(-3\right)}
Tuhia te pūtakerua o te 1156.
x=\frac{-38±34}{-6}
Whakareatia 2 ki te -3.
x=-\frac{4}{-6}
Nā, me whakaoti te whārite x=\frac{-38±34}{-6} ina he tāpiri te ±. Tāpiri -38 ki te 34.
x=\frac{2}{3}
Whakahekea te hautanga \frac{-4}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{72}{-6}
Nā, me whakaoti te whārite x=\frac{-38±34}{-6} ina he tango te ±. Tango 34 mai i -38.
x=12
Whakawehe -72 ki te -6.
-3x^{2}+38x-24=-3\left(x-\frac{2}{3}\right)\left(x-12\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te 12 mō te x_{2}.
-3x^{2}+38x-24=-3\times \frac{-3x+2}{-3}\left(x-12\right)
Tango \frac{2}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-3x^{2}+38x-24=\left(-3x+2\right)\left(x-12\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te -3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}