Whakaoti mō x
x = -\frac{13}{11} = -1\frac{2}{11} \approx -1.181818182
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6+3x+3\left(x+6\right)=10-4\left(6+4x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2-x.
-6+3x+3x+18=10-4\left(6+4x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+6.
-6+6x+18=10-4\left(6+4x\right)
Pahekotia te 3x me 3x, ka 6x.
12+6x=10-4\left(6+4x\right)
Tāpirihia te -6 ki te 18, ka 12.
12+6x=10-24-16x
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 6+4x.
12+6x=-14-16x
Tangohia te 24 i te 10, ka -14.
12+6x+16x=-14
Me tāpiri te 16x ki ngā taha e rua.
12+22x=-14
Pahekotia te 6x me 16x, ka 22x.
22x=-14-12
Tangohia te 12 mai i ngā taha e rua.
22x=-26
Tangohia te 12 i te -14, ka -26.
x=\frac{-26}{22}
Whakawehea ngā taha e rua ki te 22.
x=-\frac{13}{11}
Whakahekea te hautanga \frac{-26}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}