Aromātai
-\frac{97}{12}\approx -8.083333333
Tauwehe
-\frac{97}{12} = -8\frac{1}{12} = -8.083333333333334
Tohaina
Kua tāruatia ki te papatopenga
-\frac{18+5}{6}-\frac{2\times 9+4}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Whakareatia te 3 ki te 6, ka 18.
-\frac{23}{6}-\frac{2\times 9+4}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tāpirihia te 18 ki te 5, ka 23.
-\frac{23}{6}-\frac{18+4}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Whakareatia te 2 ki te 9, ka 18.
-\frac{23}{6}-\frac{22}{9}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tāpirihia te 18 ki te 4, ka 22.
-\frac{69}{18}-\frac{44}{18}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Ko te maha noa iti rawa atu o 6 me 9 ko 18. Me tahuri -\frac{23}{6} me \frac{22}{9} ki te hautau me te tautūnga 18.
\frac{-69-44}{18}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tā te mea he rite te tauraro o -\frac{69}{18} me \frac{44}{18}, me tango rāua mā te tango i ō raua taurunga.
-\frac{113}{18}+\frac{8\times 24+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tangohia te 44 i te -69, ka -113.
-\frac{113}{18}+\frac{192+13}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Whakareatia te 8 ki te 24, ka 192.
-\frac{113}{18}+\frac{205}{24}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tāpirihia te 192 ki te 13, ka 205.
-\frac{452}{72}+\frac{615}{72}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Ko te maha noa iti rawa atu o 18 me 24 ko 72. Me tahuri -\frac{113}{18} me \frac{205}{24} ki te hautau me te tautūnga 72.
\frac{-452+615}{72}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tā te mea he rite te tauraro o -\frac{452}{72} me \frac{615}{72}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{163}{72}-\frac{2\times 12+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tāpirihia te -452 ki te 615, ka 163.
\frac{163}{72}-\frac{24+11}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Whakareatia te 2 ki te 12, ka 24.
\frac{163}{72}-\frac{35}{12}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tāpirihia te 24 ki te 11, ka 35.
\frac{163}{72}-\frac{210}{72}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Ko te maha noa iti rawa atu o 72 me 12 ko 72. Me tahuri \frac{163}{72} me \frac{35}{12} ki te hautau me te tautūnga 72.
\frac{163-210}{72}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tā te mea he rite te tauraro o \frac{163}{72} me \frac{210}{72}, me tango rāua mā te tango i ō raua taurunga.
-\frac{47}{72}-\frac{3\times 9+2}{9}-\frac{4\times 24+5}{24}
Tangohia te 210 i te 163, ka -47.
-\frac{47}{72}-\frac{27+2}{9}-\frac{4\times 24+5}{24}
Whakareatia te 3 ki te 9, ka 27.
-\frac{47}{72}-\frac{29}{9}-\frac{4\times 24+5}{24}
Tāpirihia te 27 ki te 2, ka 29.
-\frac{47}{72}-\frac{232}{72}-\frac{4\times 24+5}{24}
Ko te maha noa iti rawa atu o 72 me 9 ko 72. Me tahuri -\frac{47}{72} me \frac{29}{9} ki te hautau me te tautūnga 72.
\frac{-47-232}{72}-\frac{4\times 24+5}{24}
Tā te mea he rite te tauraro o -\frac{47}{72} me \frac{232}{72}, me tango rāua mā te tango i ō raua taurunga.
\frac{-279}{72}-\frac{4\times 24+5}{24}
Tangohia te 232 i te -47, ka -279.
-\frac{31}{8}-\frac{4\times 24+5}{24}
Whakahekea te hautanga \frac{-279}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
-\frac{31}{8}-\frac{96+5}{24}
Whakareatia te 4 ki te 24, ka 96.
-\frac{31}{8}-\frac{101}{24}
Tāpirihia te 96 ki te 5, ka 101.
-\frac{93}{24}-\frac{101}{24}
Ko te maha noa iti rawa atu o 8 me 24 ko 24. Me tahuri -\frac{31}{8} me \frac{101}{24} ki te hautau me te tautūnga 24.
\frac{-93-101}{24}
Tā te mea he rite te tauraro o -\frac{93}{24} me \frac{101}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{-194}{24}
Tangohia te 101 i te -93, ka -194.
-\frac{97}{12}
Whakahekea te hautanga \frac{-194}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}