Aromātai
7.5
Tauwehe
\frac{3 \cdot 5}{2} = 7\frac{1}{2} = 7.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
-3 \frac{ 3 }{ 5 } \left( \frac{ 2 }{ 3 } -2.75 \right)
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{15+3}{5}\right)\left(\frac{2}{3}-2.75\right)
Whakareatia te 3 ki te 5, ka 15.
-\frac{18}{5}\left(\frac{2}{3}-2.75\right)
Tāpirihia te 15 ki te 3, ka 18.
-\frac{18}{5}\left(\frac{2}{3}-\frac{11}{4}\right)
Me tahuri ki tau ā-ira 2.75 ki te hautau \frac{275}{100}. Whakahekea te hautanga \frac{275}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
-\frac{18}{5}\left(\frac{8}{12}-\frac{33}{12}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{11}{4} ki te hautau me te tautūnga 12.
-\frac{18}{5}\times \frac{8-33}{12}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{33}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{18}{5}\left(-\frac{25}{12}\right)
Tangohia te 33 i te 8, ka -25.
\frac{-18\left(-25\right)}{5\times 12}
Me whakarea te -\frac{18}{5} ki te -\frac{25}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{450}{60}
Mahia ngā whakarea i roto i te hautanga \frac{-18\left(-25\right)}{5\times 12}.
\frac{15}{2}
Whakahekea te hautanga \frac{450}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}