Aromātai
-11
Tauwehe
-11
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
-3 \cdot 2+3-2 { 2 }^{ 2 } { \left( 2 \cdot 2-3 \right) }^{ 2 }
Tohaina
Kua tāruatia ki te papatopenga
-3\times 2+3-2^{3}\left(2\times 2-3\right)^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
-6+3-2^{3}\left(2\times 2-3\right)^{2}
Whakareatia te -3 ki te 2, ka -6.
-3-2^{3}\left(2\times 2-3\right)^{2}
Tāpirihia te -6 ki te 3, ka -3.
-3-8\left(2\times 2-3\right)^{2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
-3-8\left(4-3\right)^{2}
Whakareatia te 2 ki te 2, ka 4.
-3-8\times 1^{2}
Tangohia te 3 i te 4, ka 1.
-3-8\times 1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
-3-8
Whakareatia te 8 ki te 1, ka 8.
-11
Tangohia te 8 i te -3, ka -11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}