Whakaoti mō x
x=4
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x-3+x^{2}=2x-3
Me tāpiri te x^{2} ki ngā taha e rua.
-2x-3+x^{2}-2x=-3
Tangohia te 2x mai i ngā taha e rua.
-4x-3+x^{2}=-3
Pahekotia te -2x me -2x, ka -4x.
-4x-3+x^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
-4x+x^{2}=0
Tāpirihia te -3 ki te 3, ka 0.
x\left(-4+x\right)=0
Tauwehea te x.
x=0 x=4
Hei kimi otinga whārite, me whakaoti te x=0 me te -4+x=0.
-2x-3+x^{2}=2x-3
Me tāpiri te x^{2} ki ngā taha e rua.
-2x-3+x^{2}-2x=-3
Tangohia te 2x mai i ngā taha e rua.
-4x-3+x^{2}=-3
Pahekotia te -2x me -2x, ka -4x.
-4x-3+x^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
-4x+x^{2}=0
Tāpirihia te -3 ki te 3, ka 0.
x^{2}-4x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2}
Tuhia te pūtakerua o te \left(-4\right)^{2}.
x=\frac{4±4}{2}
Ko te tauaro o -4 ko 4.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{4±4}{2} ina he tāpiri te ±. Tāpiri 4 ki te 4.
x=4
Whakawehe 8 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{4±4}{2} ina he tango te ±. Tango 4 mai i 4.
x=0
Whakawehe 0 ki te 2.
x=4 x=0
Kua oti te whārite te whakatau.
-2x-3+x^{2}=2x-3
Me tāpiri te x^{2} ki ngā taha e rua.
-2x-3+x^{2}-2x=-3
Tangohia te 2x mai i ngā taha e rua.
-4x-3+x^{2}=-3
Pahekotia te -2x me -2x, ka -4x.
-4x-3+x^{2}+3=0
Me tāpiri te 3 ki ngā taha e rua.
-4x+x^{2}=0
Tāpirihia te -3 ki te 3, ka 0.
x^{2}-4x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=4
Pūrua -2.
\left(x-2\right)^{2}=4
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=2 x-2=-2
Whakarūnātia.
x=4 x=0
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}