Aromātai
-\frac{176}{15}\approx -11.733333333
Tauwehe
-\frac{176}{15} = -11\frac{11}{15} = -11.733333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{72}{25}\times \frac{35}{72}+\left(1.0625-\frac{5}{12}\right)\left(-16\right)
Me tahuri ki tau ā-ira -2.88 ki te hautau -\frac{288}{100}. Whakahekea te hautanga -\frac{288}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{-72\times 35}{25\times 72}+\left(1.0625-\frac{5}{12}\right)\left(-16\right)
Me whakarea te -\frac{72}{25} ki te \frac{35}{72} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2520}{1800}+\left(1.0625-\frac{5}{12}\right)\left(-16\right)
Mahia ngā whakarea i roto i te hautanga \frac{-72\times 35}{25\times 72}.
-\frac{7}{5}+\left(1.0625-\frac{5}{12}\right)\left(-16\right)
Whakahekea te hautanga \frac{-2520}{1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 360.
-\frac{7}{5}+\left(\frac{17}{16}-\frac{5}{12}\right)\left(-16\right)
Me tahuri ki tau ā-ira 1.0625 ki te hautau \frac{10625}{10000}. Whakahekea te hautanga \frac{10625}{10000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 625.
-\frac{7}{5}+\left(\frac{51}{48}-\frac{20}{48}\right)\left(-16\right)
Ko te maha noa iti rawa atu o 16 me 12 ko 48. Me tahuri \frac{17}{16} me \frac{5}{12} ki te hautau me te tautūnga 48.
-\frac{7}{5}+\frac{51-20}{48}\left(-16\right)
Tā te mea he rite te tauraro o \frac{51}{48} me \frac{20}{48}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{5}+\frac{31}{48}\left(-16\right)
Tangohia te 20 i te 51, ka 31.
-\frac{7}{5}+\frac{31\left(-16\right)}{48}
Tuhia te \frac{31}{48}\left(-16\right) hei hautanga kotahi.
-\frac{7}{5}+\frac{-496}{48}
Whakareatia te 31 ki te -16, ka -496.
-\frac{7}{5}-\frac{31}{3}
Whakahekea te hautanga \frac{-496}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
-\frac{21}{15}-\frac{155}{15}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri -\frac{7}{5} me \frac{31}{3} ki te hautau me te tautūnga 15.
\frac{-21-155}{15}
Tā te mea he rite te tauraro o -\frac{21}{15} me \frac{155}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{176}{15}
Tangohia te 155 i te -21, ka -176.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}