Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}+6x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 6 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-2\right)}}{2\left(-2\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+8}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-6±\sqrt{44}}{2\left(-2\right)}
Tāpiri 36 ki te 8.
x=\frac{-6±2\sqrt{11}}{2\left(-2\right)}
Tuhia te pūtakerua o te 44.
x=\frac{-6±2\sqrt{11}}{-4}
Whakareatia 2 ki te -2.
x=\frac{2\sqrt{11}-6}{-4}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{11}}{-4} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{11}.
x=\frac{3-\sqrt{11}}{2}
Whakawehe -6+2\sqrt{11} ki te -4.
x=\frac{-2\sqrt{11}-6}{-4}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{11}}{-4} ina he tango te ±. Tango 2\sqrt{11} mai i -6.
x=\frac{\sqrt{11}+3}{2}
Whakawehe -6-2\sqrt{11} ki te -4.
x=\frac{3-\sqrt{11}}{2} x=\frac{\sqrt{11}+3}{2}
Kua oti te whārite te whakatau.
-2x^{2}+6x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-2x^{2}+6x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
-2x^{2}+6x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{-2x^{2}+6x}{-2}=-\frac{1}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{6}{-2}x=-\frac{1}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-3x=-\frac{1}{-2}
Whakawehe 6 ki te -2.
x^{2}-3x=\frac{1}{2}
Whakawehe -1 ki te -2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{1}{2}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{11}{4}
Tāpiri \frac{1}{2} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=\frac{11}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{11}}{2} x-\frac{3}{2}=-\frac{\sqrt{11}}{2}
Whakarūnātia.
x=\frac{\sqrt{11}+3}{2} x=\frac{3-\sqrt{11}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.