Whakaoti mō x
x=4
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x^{2}+20x-48=0
Tangohia te 48 mai i ngā taha e rua.
-x^{2}+10x-24=0
Whakawehea ngā taha e rua ki te 2.
a+b=10 ab=-\left(-24\right)=24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,24 2,12 3,8 4,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
1+24=25 2+12=14 3+8=11 4+6=10
Tātaihia te tapeke mō ia takirua.
a=6 b=4
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(-x^{2}+6x\right)+\left(4x-24\right)
Tuhia anō te -x^{2}+10x-24 hei \left(-x^{2}+6x\right)+\left(4x-24\right).
-x\left(x-6\right)+4\left(x-6\right)
Tauwehea te -x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-6\right)\left(-x+4\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=4
Hei kimi otinga whārite, me whakaoti te x-6=0 me te -x+4=0.
-2x^{2}+20x=48
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-2x^{2}+20x-48=48-48
Me tango 48 mai i ngā taha e rua o te whārite.
-2x^{2}+20x-48=0
Mā te tango i te 48 i a ia ake anō ka toe ko te 0.
x=\frac{-20±\sqrt{20^{2}-4\left(-2\right)\left(-48\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 20 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-2\right)\left(-48\right)}}{2\left(-2\right)}
Pūrua 20.
x=\frac{-20±\sqrt{400+8\left(-48\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-20±\sqrt{400-384}}{2\left(-2\right)}
Whakareatia 8 ki te -48.
x=\frac{-20±\sqrt{16}}{2\left(-2\right)}
Tāpiri 400 ki te -384.
x=\frac{-20±4}{2\left(-2\right)}
Tuhia te pūtakerua o te 16.
x=\frac{-20±4}{-4}
Whakareatia 2 ki te -2.
x=-\frac{16}{-4}
Nā, me whakaoti te whārite x=\frac{-20±4}{-4} ina he tāpiri te ±. Tāpiri -20 ki te 4.
x=4
Whakawehe -16 ki te -4.
x=-\frac{24}{-4}
Nā, me whakaoti te whārite x=\frac{-20±4}{-4} ina he tango te ±. Tango 4 mai i -20.
x=6
Whakawehe -24 ki te -4.
x=4 x=6
Kua oti te whārite te whakatau.
-2x^{2}+20x=48
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+20x}{-2}=\frac{48}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{20}{-2}x=\frac{48}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-10x=\frac{48}{-2}
Whakawehe 20 ki te -2.
x^{2}-10x=-24
Whakawehe 48 ki te -2.
x^{2}-10x+\left(-5\right)^{2}=-24+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=-24+25
Pūrua -5.
x^{2}-10x+25=1
Tāpiri -24 ki te 25.
\left(x-5\right)^{2}=1
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=1 x-5=-1
Whakarūnātia.
x=6 x=4
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}