Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2a^{2}-2a+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 6}}{2\left(-2\right)}
Pūrua -2.
a=\frac{-\left(-2\right)±\sqrt{4+8\times 6}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
a=\frac{-\left(-2\right)±\sqrt{4+48}}{2\left(-2\right)}
Whakareatia 8 ki te 6.
a=\frac{-\left(-2\right)±\sqrt{52}}{2\left(-2\right)}
Tāpiri 4 ki te 48.
a=\frac{-\left(-2\right)±2\sqrt{13}}{2\left(-2\right)}
Tuhia te pūtakerua o te 52.
a=\frac{2±2\sqrt{13}}{2\left(-2\right)}
Ko te tauaro o -2 ko 2.
a=\frac{2±2\sqrt{13}}{-4}
Whakareatia 2 ki te -2.
a=\frac{2\sqrt{13}+2}{-4}
Nā, me whakaoti te whārite a=\frac{2±2\sqrt{13}}{-4} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{13}.
a=\frac{-\sqrt{13}-1}{2}
Whakawehe 2+2\sqrt{13} ki te -4.
a=\frac{2-2\sqrt{13}}{-4}
Nā, me whakaoti te whārite a=\frac{2±2\sqrt{13}}{-4} ina he tango te ±. Tango 2\sqrt{13} mai i 2.
a=\frac{\sqrt{13}-1}{2}
Whakawehe 2-2\sqrt{13} ki te -4.
-2a^{2}-2a+6=-2\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1-\sqrt{13}}{2} mō te x_{1} me te \frac{-1+\sqrt{13}}{2} mō te x_{2}.