Aromātai
\frac{2\left(1-x\right)\left(x+5\right)}{3}
Tauwehe
\frac{2\left(1-x\right)\left(x+5\right)}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{-2x^{2}}{3}-8\times \frac{x}{3}+\frac{10}{3}
Tuhia te -2\times \frac{x^{2}}{3} hei hautanga kotahi.
\frac{-2x^{2}}{3}-\frac{8x}{3}+\frac{10}{3}
Tuhia te 8\times \frac{x}{3} hei hautanga kotahi.
\frac{-2x^{2}-8x}{3}+\frac{10}{3}
Tā te mea he rite te tauraro o \frac{-2x^{2}}{3} me \frac{8x}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{-2x^{2}-8x+10}{3}
Tā te mea he rite te tauraro o \frac{-2x^{2}-8x}{3} me \frac{10}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2\left(-x^{2}-4x+5\right)}{3}
Tauwehea te \frac{2}{3}.
a+b=-4 ab=-5=-5
Whakaarohia te -x^{2}-4x+5. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+x\right)+\left(-5x+5\right)
Tuhia anō te -x^{2}-4x+5 hei \left(-x^{2}+x\right)+\left(-5x+5\right).
x\left(-x+1\right)+5\left(-x+1\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(-x+1\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
\frac{2\left(-x+1\right)\left(x+5\right)}{3}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}