Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(-4y^{2}+37y-63\right)
Tauwehea te 4.
a+b=37 ab=-4\left(-63\right)=252
Whakaarohia te -4y^{2}+37y-63. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -4y^{2}+ay+by-63. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,252 2,126 3,84 4,63 6,42 7,36 9,28 12,21 14,18
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 252.
1+252=253 2+126=128 3+84=87 4+63=67 6+42=48 7+36=43 9+28=37 12+21=33 14+18=32
Tātaihia te tapeke mō ia takirua.
a=28 b=9
Ko te otinga te takirua ka hoatu i te tapeke 37.
\left(-4y^{2}+28y\right)+\left(9y-63\right)
Tuhia anō te -4y^{2}+37y-63 hei \left(-4y^{2}+28y\right)+\left(9y-63\right).
4y\left(-y+7\right)-9\left(-y+7\right)
Tauwehea te 4y i te tuatahi me te -9 i te rōpū tuarua.
\left(-y+7\right)\left(4y-9\right)
Whakatauwehea atu te kīanga pātahi -y+7 mā te whakamahi i te āhuatanga tātai tohatoha.
4\left(-y+7\right)\left(4y-9\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-16y^{2}+148y-252=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-148±\sqrt{148^{2}-4\left(-16\right)\left(-252\right)}}{2\left(-16\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-148±\sqrt{21904-4\left(-16\right)\left(-252\right)}}{2\left(-16\right)}
Pūrua 148.
y=\frac{-148±\sqrt{21904+64\left(-252\right)}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
y=\frac{-148±\sqrt{21904-16128}}{2\left(-16\right)}
Whakareatia 64 ki te -252.
y=\frac{-148±\sqrt{5776}}{2\left(-16\right)}
Tāpiri 21904 ki te -16128.
y=\frac{-148±76}{2\left(-16\right)}
Tuhia te pūtakerua o te 5776.
y=\frac{-148±76}{-32}
Whakareatia 2 ki te -16.
y=-\frac{72}{-32}
Nā, me whakaoti te whārite y=\frac{-148±76}{-32} ina he tāpiri te ±. Tāpiri -148 ki te 76.
y=\frac{9}{4}
Whakahekea te hautanga \frac{-72}{-32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
y=-\frac{224}{-32}
Nā, me whakaoti te whārite y=\frac{-148±76}{-32} ina he tango te ±. Tango 76 mai i -148.
y=7
Whakawehe -224 ki te -32.
-16y^{2}+148y-252=-16\left(y-\frac{9}{4}\right)\left(y-7\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{9}{4} mō te x_{1} me te 7 mō te x_{2}.
-16y^{2}+148y-252=-16\times \frac{-4y+9}{-4}\left(y-7\right)
Tango \frac{9}{4} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-16y^{2}+148y-252=4\left(-4y+9\right)\left(y-7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te -16 me te 4.