Whakaoti mō x
x=-\frac{2y}{5}+\frac{9}{25}
Whakaoti mō y
y=-\frac{5x}{2}+\frac{9}{10}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-15x+9-10x=10y
Tangohia te 10x mai i ngā taha e rua.
-25x+9=10y
Pahekotia te -15x me -10x, ka -25x.
-25x=10y-9
Tangohia te 9 mai i ngā taha e rua.
\frac{-25x}{-25}=\frac{10y-9}{-25}
Whakawehea ngā taha e rua ki te -25.
x=\frac{10y-9}{-25}
Mā te whakawehe ki te -25 ka wetekia te whakareanga ki te -25.
x=-\frac{2y}{5}+\frac{9}{25}
Whakawehe 10y-9 ki te -25.
10x+10y=-15x+9
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
10y=-15x+9-10x
Tangohia te 10x mai i ngā taha e rua.
10y=-25x+9
Pahekotia te -15x me -10x, ka -25x.
10y=9-25x
He hanga arowhānui tō te whārite.
\frac{10y}{10}=\frac{9-25x}{10}
Whakawehea ngā taha e rua ki te 10.
y=\frac{9-25x}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
y=-\frac{5x}{2}+\frac{9}{10}
Whakawehe -25x+9 ki te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}