Whakaoti mō x (complex solution)
x=\frac{1+3\sqrt{7}i}{32}\approx 0.03125+0.248039185i
x=\frac{-3\sqrt{7}i+1}{32}\approx 0.03125-0.248039185i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-144x^{2}+9x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}-4\left(-144\right)\left(-9\right)}}{2\left(-144\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -144 mō a, 9 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-144\right)\left(-9\right)}}{2\left(-144\right)}
Pūrua 9.
x=\frac{-9±\sqrt{81+576\left(-9\right)}}{2\left(-144\right)}
Whakareatia -4 ki te -144.
x=\frac{-9±\sqrt{81-5184}}{2\left(-144\right)}
Whakareatia 576 ki te -9.
x=\frac{-9±\sqrt{-5103}}{2\left(-144\right)}
Tāpiri 81 ki te -5184.
x=\frac{-9±27\sqrt{7}i}{2\left(-144\right)}
Tuhia te pūtakerua o te -5103.
x=\frac{-9±27\sqrt{7}i}{-288}
Whakareatia 2 ki te -144.
x=\frac{-9+27\sqrt{7}i}{-288}
Nā, me whakaoti te whārite x=\frac{-9±27\sqrt{7}i}{-288} ina he tāpiri te ±. Tāpiri -9 ki te 27i\sqrt{7}.
x=\frac{-3\sqrt{7}i+1}{32}
Whakawehe -9+27i\sqrt{7} ki te -288.
x=\frac{-27\sqrt{7}i-9}{-288}
Nā, me whakaoti te whārite x=\frac{-9±27\sqrt{7}i}{-288} ina he tango te ±. Tango 27i\sqrt{7} mai i -9.
x=\frac{1+3\sqrt{7}i}{32}
Whakawehe -9-27i\sqrt{7} ki te -288.
x=\frac{-3\sqrt{7}i+1}{32} x=\frac{1+3\sqrt{7}i}{32}
Kua oti te whārite te whakatau.
-144x^{2}+9x-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-144x^{2}+9x-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
-144x^{2}+9x=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
-144x^{2}+9x=9
Tango -9 mai i 0.
\frac{-144x^{2}+9x}{-144}=\frac{9}{-144}
Whakawehea ngā taha e rua ki te -144.
x^{2}+\frac{9}{-144}x=\frac{9}{-144}
Mā te whakawehe ki te -144 ka wetekia te whakareanga ki te -144.
x^{2}-\frac{1}{16}x=\frac{9}{-144}
Whakahekea te hautanga \frac{9}{-144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x^{2}-\frac{1}{16}x=-\frac{1}{16}
Whakahekea te hautanga \frac{9}{-144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x^{2}-\frac{1}{16}x+\left(-\frac{1}{32}\right)^{2}=-\frac{1}{16}+\left(-\frac{1}{32}\right)^{2}
Whakawehea te -\frac{1}{16}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{32}. Nā, tāpiria te pūrua o te -\frac{1}{32} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{16}x+\frac{1}{1024}=-\frac{1}{16}+\frac{1}{1024}
Pūruatia -\frac{1}{32} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{16}x+\frac{1}{1024}=-\frac{63}{1024}
Tāpiri -\frac{1}{16} ki te \frac{1}{1024} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{32}\right)^{2}=-\frac{63}{1024}
Tauwehea x^{2}-\frac{1}{16}x+\frac{1}{1024}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{32}\right)^{2}}=\sqrt{-\frac{63}{1024}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{32}=\frac{3\sqrt{7}i}{32} x-\frac{1}{32}=-\frac{3\sqrt{7}i}{32}
Whakarūnātia.
x=\frac{1+3\sqrt{7}i}{32} x=\frac{-3\sqrt{7}i+1}{32}
Me tāpiri \frac{1}{32} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}